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SELF-CONSISTENT FIELD SCHEMES FOR THE TWO-ELECTRON

ATOMIC IONS IN THE GROUND STATE

by
George Vasily Nazaroff

University of Wisconsin Theoretical Chemistry Institute

Madison, Wisconsin

ABSTRACT

9 252 ovee
\ |

The formalism for the‘generalized N-configuration self-
consistent (SCF) schemes is developed for the two-electron atomic
ions in the ground state. The equations for the SCF orbitals are
expanded in powers of the inQerse nuclear charge according to the
well-known perturbation scheme based on considering the electronic
interaction potential as a perturbation. Several first-order SCF
equations are solved numerically.

The formalism for the exact wave function is cast into SCF
form by writing it in terms of the natural orbitalg. Each natural
orbital is considered as a function of an infinite number of
parameters which are generalizations of the natural occupation
amplitudes. The formalism for any N~-configuration SCF scheme is
obtained from the natural orbital formalism by setting all but
the first N parameters equal to zero. The k-th N-configuration

SCF orbital is thus the k-th natural orbital with all but the
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first N natural occupation amplitudes set equal to zero. The
N-configuration SCF wave function is a generalization of the
ordinary Restricted Hartree-Fock wave function and is the best
possible N-configuration wave function.

The perturbation expansion of the N-configuration SCF schemes
is effected by first developing the exact problem in terms of the
inverse nuclear charge, transforming the exact problem into natural
orbital form and then setting the appropriate parameters equal to
zero. The natural occupation amplitudes are divided into the
intrinsic and the correlation amplitudes. The intrinsic amplitudes
can never -be zero, while the correlation amplitudes go to zero as
the inverse nuclear charge goes to zero. The natural orbitals are
divided into intrinsic and correlation orbitals by their association
with the occupation amplitudes. The first-order equations define
only the zero-order correlation orbitals.

The first-order part of the Extended Hartree-Fock (EHF) scheme,
defined as that SCF scheme which contains one correlation orbital
of each angular symmetry type, is discussed in detail. The double-
excitation parts of several second-order EHF energies are obtained
numerically and compare very favorably with the exact values.

These second-order energies are the lowest possible energies
obtainable from an orbital product approximation to the double-

excitation part of the exact first-order wave function.
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INTRODUCTION

The exact wave function of a quantum-mechanical system is a
function of the spatial and spin coordinates of all the electronms.
The wave function does not assign electrons to orbitals and does
not factor into products of simpler functions. Such a complicated
functional form is necessary in order to adequately describe the
correlation between the electrons. The correlation arises because
electrons repel each other and thus adjust their motions and spatial
distributions so as to stay as far apart as possible. An exact
many~-electron wave function is difficult to calculate and can be
obtained only approximately. It would therefore be desireable to
replace the exact problem by a more tractable model.

A very successful model has been the restricted Hartree-Fock
(RHF) mode1.1’2 This model assigns each electron to an orbital in
such a way that two closed-shell electrons occupy similar spatial
orbitals but with different spins. The RHF model, however, neglects
electron correlation.3 Lowdin has suggested that some portion of
the correlation can be taken into account by allowing every electron
to occupy ; different space orbita.l.4 If these orbitals are
restricted to be s~-type orbitals, the model is the "different
orbitals for different spins" (DODS) model. If the angular
dependence of the orbitals is not restricted, the model is the
extended Hartree-Fock (EHF) model. The RHF, DODS and EHF models
are self-consistent field (SCF) schemes in that the equations for

the various functions are nonlinear integro-differential equationms.
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Variational calculations of zeveral DODS and EHF energies have
yielded values considerably lower than the RHF values.

The aim of this work is to set up, investigate and evaluate an
SCF approach to the two=-electron atomic problem. The discussion will
be limited to the ground states of the two-electron atomic ions.

The investigation wil! begin with some discussion of the intuitive
derivation of the RHF and DODS schemes. In Section II a hierarchy

of generalized SCF schemes will be formally derived from the exact
problem. In Section III the exact problem will be developed according
to a perturbation scheme which treats the electronic interaction as a
perturbation. The results of Section III will be used to guide the
way in developing the generalized SCF schemes according to the above-
mentioned perturbation method. 1In Section V a particular set of
(perturbed) SCF orbitals, the EHF orbitals, will be discussed, and

in Section VI the numerical solution of the first-order EHF perturba-
tion equations will be investigated. The work will be concluded

with Section VII in which the possible virtues of SCF methods for
two-electron atomic systems will be discussed.

The original ccontributions cf this work can be summarized as
follows: (1) The coupled, integro~differential equations for a
general SCF scheme have been derived, and the RHF, DODS and EHF
schemes have been put intc a perspective with respect to all
possible SCF schemes; (2} The similarities, differences and connection
of all possible SCF orbitals with each other and with the natural
spin orbitals of ngdin kave been established; (3) The perturbation

expansion of the gemeral SCF equations in powers of the inverse




nuclear charge has been set up; (4) Several first-order EHF perturba-
tion equations have been solved numerically and several second-order

EHF energies have been obtained.

I. PHYSICAL INTERPRETATION OF SOME SELF-CONSISTENT FIELD MODEILS

The RHF and DODS models are intuitively appealing in that they
assign each electron to a separate orbital. Before discussing these
models, however, some orientation is necessary. In any discussion
in this work the Hamiltonian referred to will always be the exact,
non-relativistic, spin-free, two-electron Hamiltonian H (G)f’)__)

given by

Hcf?lfl): ACfv) ‘/‘/’)(52)4}17— L ) (1.1)

12

where ‘)(Z‘) is the ordinary hydrogenic Hamiltonian
/)(f‘)-- -Lp_ L ! (1.2)
2 r\

where—r‘zr'i represents the electronic interaction potential and
where Z is the nuclear charge of the ion. The symbol ,C\,- denotes
the collection of the three spatial coordinates of the i-th electron.
All distances are in units of ao/z , and all energies are in units
of Ziez/ao vhere e is the electronic charge and where Qp = ﬁzg
withﬂ the reduced mass of the electron.

The crudest possible model, which will be called the zero-order

model, is obtained by assuming that the spatial distribution of each



electron is the same distributicn which would exist if the electronic
interaction potential were neglected. Such a model predicts that
each electron occupies a hydrogenic crbital. The ground state has
both electrons occupying the 1s hydrogenic space orbital, one
electron with & spin and one electron with ’6 spin. The zero-

o)
order spatial wave functiocn will be deroted by (V‘7 /,.2) where
vT)v

(o .
?(L’“m[a) = 75(!(}) 15C4, ), (1.3)

The spin has been factored cut and neglected. The designation
"wave function' is réserved for any two-electron function which
describes a state of the two-electron system. The designation
"orbital" is applied to any one=-electron function which might be a
wave function for a single electron. The 1s hydrogenic orbitals
are s-type functions in that each one is a prcduct of a radial
o

function and the spherical harmenic 7/0 (9} sz) equal to 7/‘/[_/77:7.
The energy of the two-electron ions which the zerc-order model
predicts is obtained by taking the expectation value of the
Hamiltonian with respect to the zero-order wave function. For the ‘
case of the helium atom the energy predicted by the zero-order
model is -2.75 Cyao as compared with the non-relativistic value8
of -2.9037244 ez/ao . In all further discussions, the unit of
energy 6700 will be called an atomic unit (a.u.) of energy.

The simplest improvement over the zero-order model is offered
by the RHF model. This model, just like the zero-order one, assigns

each (ground-state) electron to one space orbital but requires that




this orbital be the energetically optimum orbital. The RHF wave

function has the same form as the zero-~order wave function, i.e.

Ti)/((ﬁfi- D= W) UL). (1.4)

The RHF orbital U([) 1is required to be an s-function just like the
hydrogenic 1a orbital. The RHF energy, just like the energy of
the zero-order model, is obtained by taking the expectation value
of the Hamiltonian with respect to the RHF wave functioq. In terms

of the RHF orbital J{ the RHF energy is

Ene=2<Whju> +Z<unfi, hygs»

with

J= <u/up, a.&

The equation for the RHF orbital9 is obtained by requiring ERHF

to be stationary with respect to variations in L subject to the

normalization constraint, eq. (1.6). The equation is

ﬂ,o(f,‘)—f —LZ <y ) /-,l; / 74(‘6)21.- e]fu(r;/:o(l.n
where G; is the greater of V} and Vi_, where the parameter £ 1is

€= Egpe—<ulhs [v ) (1.8)



.

and where .the operator/xo (lﬂ) i

n

- 7 %) 1
Z)o (%)2 "Z}«W “—F' (1.9)

The quantity <f14(V})/7ze7/44(V}{;}; is the average electron

interaction defined to be ‘ o .
L >, = [Pt 2 U0a)L 10 '
Ly CV‘z)/ > U 1}>w1“‘ ’ 1272 “ 2),(1.10)

The function 4/1(%) > radial part of the RHF orbital ’L(CLC‘) .

s
w
T
J*
o

For the case of the helium atom the grournd-state RHF energylo is
-2.861680 a.u. The reason for the inaccuracy in this.energy is
because, even though the RHF wave function is the best single con-
figuration wave function, a single configuraticn is not sufficient
to describe electron correlaticn.

The RHF wave function {(for the grcund state) is not at all
correlated. The probability of finding one electron about the point
LH and the cther electron simultaneously about the ﬁoint Fa (the
absolute square of the wave function} is just the product of two
independent probabilities. The RHF approximation (for singlet states)
just like any SCF model neglects the Coulomb h01¢3 about each electron
since the probability cf findicg both electrons ét the same point in
space is not zerc.

Some (radial) correlaticn is taken into acccunt by the DODS

model. The DOBS wave function has the form




q)aﬂn»»z - ';%- SD('\"I)X( 2)+)((%7)kp(42] (1.11)

which is a generalization of the RHF wave function. 1If the DODS
orbitals \P and )( are restricted to be equal to each other, one
would then have the RHF wave function. The DODS orbitals are s~
functions and are defined to be the energetically optimum orbitals.
The DODS energy, obtained by taking the expectation value of the

Hamiltonian with respect to the DODS wave function, is

<plhly>+ {x 1alx>

T 2444 )<><+’/x>
- TELPRIE, [ ox o+ 5 <pxlixg>
Dops ] +<Pplx>?

with the conditions

<plp>=1 (1.13a)

(1.12)

and

<X/X>=7. (1.13b)

The two equations11 for \P and 7( are obtained by requiring
EDODS to be stationary with respect to variations in 71) and )(

subject to the normalization constraints, eqs. (1.13).




The equations are

[%5'?) + L xR [xt27, ~ Epy [Pls)
+[<30/X740(V4)+%_<)((‘€)J‘Z‘>/7D(V2)>Vz,_,é%x X<k7)=

=0 (1.14a)
[[,GC)*t *%‘<7UCV2)/%7/\P(‘/2)>VZ”EX x]x('?)

+ ZPIK> by Ga)p L K [ [0 2 -] 45

=0 (1.14)

where the epsilons are defined as

é‘f’%‘ = E[)opj '“()(/40/)(>) (1.13a)
EpxX= <‘P/><>Eow3“<\///l,o/><> (1.15b)

and

€7<sz0005,<\‘0/40/%,> (1.15¢)

Since the DODS equations have not been solved, one can only say that
the DODS energy for helium is below the values’6 ~2.8756614 a.u.

The DODS model takes radial correlation into account in an
average way by pulling one electron close to the nucleus and by
pushing the other one further out. The probability that one

electron is about the point 427 and the other electron simultaneously




about the point [, 1is no longer the product of two independent
probabilities but contains a cross term. Even though the two
electrons can, in the DODS model, occupy the same point in space,
they tend to avoid each other by occupying on the average different
regions of space.

The RHF and DODS equations are all one-electron, non-linear,
integro-differential equations and must be solved numerically.

However, Linderberg9a and Cohen9b have successfully tackled
the RHF equation by a perturbation method; The electronic interaction
potential 1/r12 was considered as a perturbation, and the RHF orbital
and RHF energy were expanded in powers of the inverse nuclear charge
1/Z. The first-order RHF equations were easily integrated to obtain
the first-order RHF orbital.

It was hoped that the same perturbation method of solution
could be applied to the DODS equations. However, in expanding the
DODS orbitals in terms of the inverse nuclear charge, it turned out
that the only first-order solution to the DODS equations was just
the first-order RHF orbital. Thus, in using the inverse nuclear
charge as a perturbation parameter, the DODS equations collapsed into
the RHF equation. The clue to the reason for the collapse was
pointed out by Professor Byers Brown. After analyzing in powers of
1/Z the variational DODS wave functions of Shull and ngdin5 he
pointed out that one must use the square root of the inverse nuclear
charge Z/bg? as the perturbation parameter for the DODS equations.
The necéssity of using the square root of the inverse nuclear charge

instead of the nuclear charge itself as the expansion parameter has
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been subsequently discussed by Stewart12 and by Coulson.11 As it will
be shown in Section IV, one avoids the necessity of introducing Z/»ﬁ?
into the discussiocn if the prcblem is set up in natural orbital form.
By rewriting the DODS formalism, a perturbation expansion involving
only 1/Z can be defined.

The RHF wave function is the best single-configuration wave
function, and the DODS wave function is the best two-configuration
wave function. One can go on and formulate the equations for the
best N-configuration wave function. Instead of considering a
particular SCF scheme, the general N-configuration SCF scheme will
be discussed. In the next section a hierarchy of SCF functions will
be derived. The lowest two members of the hierarchy will be the
RHF and DODS wave functions, and the highest member will be the exact

wave function.

II. GENERALIZED SELF-CONSISTENT FIELD SCHEMES

A generalized N-configuration SCF scheme is such a scheme which
gives the best approximate wave function consisting of N configurations.
The generalized SCF schemes for the ground state will be developed as
members of a hierarchy of SCF schemes. The lowest member of the
hierarchy is the RHF scheme and the highest member the exact problem.

In trying to obtain the exact wave function of a system

xigkzy'ﬁa) it is customary to expand it in some suitable (finite)
set of known, ortho-normal, one-electron functions with unknown

coefficients. Choosing different sets of functions leads to different
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coefficients and thus to different representations of the same wave
function. There is, however, one special set of ortho-normal functions
xﬁff) having the special coefficients Wé such that all off-diagonal

coefficients ’7{,‘ are equal to zero, i.e.

?(—G,fz]z ;7 47{( ;K/ifr'/ %fif"’) (2.1)
with the condition

7‘: %7 /7; (2.2)

which insures that the wave function is normalized to unity. The

13-19 (NO) and

function %fi:,) is called the k-th natural orbital
the coefficient ,74 the k-th natural occupation amplitude. For
some properties of the NO's, see Appendix I.

The exact wave function, eq. (2.1), consists of an infinity
of configurations and involves an infinity of NO's and natural
occupation amplitudes. An approximate N-configuration SCF wave

function @N('C‘i/ff?-) will be defined as that N-configuration wave

function which, when written in NO form, consists of the N orbitals

%I\s,':“ﬁz\ ax;d the N occupation amplitudes 47"4;\, I1kKN, i.e.
N
TPN(!C‘:, K2)= %7747/‘%\ ()(,\Sio? 72,72%’)' (2.3)

The orbitals xh(l"%) will be called the (ground-state) basic N-orbitals
and the numbers ’)Zvﬂ\ the N-occupation amplitudes. Equations for the
3

basic N-orbitals and the N-occupation amplitudes can be obtained in




12

the following manner. Consider the functional E%; {{; gors #}/}

227/426[ [h1€:>

+3 37 pu <l Il i
:7%2(7)“7[”7 _ 27 Y 121777)

where

ZA; P 5 2.4y /
N

which is just the expectation value of the Hamiltonian with respect
to an arbitrary normalized, twe-electron, N-configuration function

égV(I;,Zi) written in natural form as

Z L (L) (4a
16 (,57,,{2 _ (2.5)

A% 2:7 /2
/(/5..
with the constraint < ‘7 )
<—é[[]>=0(7j (2.6)

Those functions for which the functional attains its lowest stationary

value subject to the constraints of eq. (2.6) are the basic N-orbitals
)CCKD which satisfy the follewing N coupled, non-linear integro-

differential equations, 1{{ kS N,

M
P K+ Rk k> ey

(2.7)

/—1<X~£/‘72 [Xeij >~ )MJ/X%) 0.
7=#
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Each basic N-orbital is thus a function of the N parameters A/2,

The lowest stationary value of the functiomal 5,;{1,-",6\,} will be

denoted by €~</(J4),.,’/&~) , where
237 47l h K>

=7

1 5 |
| +Z A4, v L
& hmt)m LT T K e

ﬁ /41'2 (2.8)
= /
=7

which is a function of the N parameterS/uﬁ . The N-occupation

amplitudes 77,,(& are obtained by requiring the function g,, %a---,ﬁﬂ)

to be stationary with respect to variations in the parameters /J&.

That collection of /{f‘f( for which EN(/“»;)"-,/(I,/) attains its

lowest stationary value is the collection of the N-occupation

amplitudes which are given by the equations, 7\< ﬁs N,

z :
—‘Z gﬁ/aﬂ <XM£XM4/7;L7_‘2/XM‘7' Xp,j>
ko

2Kk [h [xnid >=E
+ 3 KU AXKuk [ [ Xk Keude D

(2.9)

The N-configuration SCF energyElv is the lowest stationary value

of the function fﬁ, (/M'Y"”//(’(h) s L.e.

EN’" f,v (’7,27 yorr 07"4"9 (2.10)

The integrals appearing in eqs. (2.7) are
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<></V,/ﬁ /7/4‘72/)@/,7' >:f0/Z2 Xy 2 (522,777—2 ><A,’7 (52) (2.11)

and the quantities,}ﬁc{;f are Lagrange parameters brought in by the

ortho-normality constraints, eq. (2.6). They are

)/‘i%j: /Mj'[g/v 0{27—— <X/V,%//7 />(M7‘>] (2.12)

It will be assumed that the basic N-orbitals have been arranged in
some definite order.

In specifying a SCF wave function one must not only specify
the number of configurations it is to contain, but one must also
specify the angular symmetry of the orbitals out of which the con-
figurations are to be constructed. Therefore, the subscript N on
the SCF wave functions and energies must be understood as a list of
number s (NO,NI,...,NL,,.Q) for L2 0. The number Ny tells how
many L-type configurations the SCF function CZEV<X:1,K22) contains
and thys how many L-type orbitals are involved. (An L-type orbital
is an orbital whose angular dependence can be described by an L-th
order spherical harmonic.) For two lists M and N, one has that
M> N if at least one ML> NL . The orbitals %<'/C) will be
enumerated by writing IQSkng or equivalently by writing 1 kis N
and N+ 1S k< M for N< M.

The exact wave function is such that the list defining it has
all NL equal to infinity. The formalism for the NO's can be obtained

from the basic N-orbital formalism above by setting all N. equal to

L

infinity. Thus, in discussing the basic N=orbitals one can also be
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discussing the NO's. It will be assumed in the following discussion
that all SCF wave functions ‘@_N (‘61,1(2) are constructed to have the
correct symmetry properties.

The basic N-orbitals, the parameters /(/fé\ and thus the N-occupation
amplitudes can be divided into two sets: the intrinsic orbitals,
parameters and occupation amplitudes and the correlation orbitals,
parameters and occupation amplitudes. The difference between the
two sets can be made clear in the following way. The electronic

interaction potential 1/r o is always multiplied by the factor 1/z

1
which can be considered as measuring the strength of the electronic
interaction relative to the effect of the central field. As 1/Z
approaches zero the electronic interaction disappears, and each SCF
wave function (including the exact wave function) approaches the zero-
order wave function discussed at the beginning of Section I, eq. (1.3).
The intrinsic N-orbitalsare those orbitals which approach the hydrogenic
orbitals occurring in the zero-order wave function as 1/Z goes to zero.
The intrinsic parameters /{/!é (and thus the intrinsic N-occupation
amplitudes) are those parameters which approach non-zero values as
1/Z goes to zero. All other basic N-orbitals, parameters and
N-occupation amplitudes are correlation orbitals, parameters and
amplitudes. All correlation parameters /“,é approach zero as 1/Z
approaches zero.

Consider two sets of basic orbitals, e.g. XAS!C) and X,‘C/"C

/

where 1<j\<M, 1< k\<N and N<M. The first N of the M-orbitals
is different from the N-orbitals because the M-orbitals satisfy M

coupled equations and the N-orbitals satisfy N coupled equations,
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eq. (2.7). However, even though the M-orbitals and N-orbitals are
different functions, they are quite similar. If one sets all but the
first N parameters//%é\, 1~$§k§S/N, in the basic M-orbitals equal to
zero, the resulting functions can be divided into two sets. The first
N of the resulting functions satisfy the N coupled equations which

can be obtained from the first N of the M coupled equations, (eq. (2.7)
with M written instead of N) defining the basic M-orbitals by setting
all but the first N parameters equal to zero. However, these N coupled
equations are just the equations defining the basic N-orbitals,

eq. (2.7). The last M-N of the resulting functions will be denoted by

X-C/‘C) and satisfy the equatioms, a> N+1
M -
| :

)/vaCv) *Z [’iova/m/xm’O
— /'}/Vaéjxi/;ﬁ(k)‘ad 13)

which have been obtained from the last M-N equations, eq. (2.7),
by setting the appropriate parameters equal to zero. The Lagrange
parameters )\Maa_and /‘/",Qé have been obtained from the last M-N
Lagrange parameters of eq. (2. 12) by setting all but the first N
parameters’/é41é equal to zero. The orbitals }:C/U will be called
rMa

the complimentary N-orbitals and the Lagrange parameters mentioned
above the complimentary Lagrange parameters.

The k-th basic N-orbital and the k-th basic M-orbital satisfy
equations having roughly the same form. In fact, every basic orbital

satisfies the same type of equation. Every complimentary orbital

satisfies the same type of equation which, however, is different from




the type of equation satisfied by the basic orbitals; The equation
satisfied by each complimentary N-orbital, eq. (2.13), is not a coupled
equation. Each complimentary orbital is required only to be orthogonal
to all of the basic N-orbitals. Since the solutions of eq. (2.13) do
not in any way depend on the range of the running subscript a, it is
artificial to prescribe an upper limit to it. One might as well
consider all possible complimentary N-orbitals of which there will

be an infinity. It can be readily verified that the complimentary
N-orbitals are mutually orthogonal.

In the above discussion the lists M and N were arbitrary except
that14;>N. Therefore the basic N-orbitals can be obtained from any
set of basic M orbitals which can thus be obtained from the NO's by
setting all but the first M parameters /AQ%E equal to zero. Therefore,
"the basic N-orbitals are special cases of the first N NO's, and the
complimentary N-orbitals are special cases of the rest of the NO's.

The basic and complimentary N-orbitals X;Sﬁ%? and )(Cﬁﬁ} s the
7 Ma

Lagrange parameters )}772 and the function €/VC/(”4"“I/0('N)

are all functions of the N parameters//¢t¢2 . Since the parameters
/AbEj s J f k, occur in a similar way in eq. (2.7) they probably
occur in a similar way in the above-mentioned quantities. However,
the parameter‘/lg( is special. It occurs in eq. (2.7) in a
special way, and the above-mentioned quantities depend on it in a
unique way. Consider, for example, the k-th NO >CCKU . In setting
various parameters‘/lff equal to zero, the resulting orbitals are
all basic orbitals as long as the g-fA parameter/bli is not equal

to zero. -As soon as //éifé is set equal to zero, even if it were the
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only parameter set equal to zero, the orbital becomes a complimentary
orbital. In setting parameters equal to zero one can, of course, never
set any of the intrinsic parameters equal to zero.

Consider the list N for which all N are equal to zero except N

L 0

thich is equal to unity. Such a list is the (ground-state) RHF list
and defines the RHF wave function. The DODS list is such that all NL
are equal to zero except NO which is equal to 2, and the EHF list is
such that all NL for L?;fl are equal to 1 and NO is equal to 2. For
a physical interpretation of the generalized SCF schemes, see
Appendix II.

Since the basic N-orbitals can be considered as special cases of
the basic M-orbitals which can be considered as special cases of the
NO's, one can consider the SCF wave function t};L,Ciiﬂlﬁé)as a special
case of the SCF wave funct10n.§£&1<}CH,vg) which can be considered as

spec1al case of the exact wave function C},)Cm,%—z) One must,

therefore, have the following relatiomship

Ep 2 Em 2 E (214

where E is the exact energy.

The SCF equations, eq. (2.7), are a complicated set of equations,
As will be shown in later sections, they can be solved approximately
by perturbation theory., 1In the following section a convenient
perturbation method will be develcped and subsequently used to obtain

some zero-order basic EHF correlation orbitals.
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IITI. PERTURBATION THEORY

In this section the perturbation expansion based on considering
the electronic interaction term in the Hamiltonian as a perturbation
will be defined for the two-electron atomic ions in the ground state.
The first-order equations will be derived and discussed.

In dealing with the ground state of a two-electron atomic iomn,
it is convenient to write the problem in terms of the coordinate520a
(rl,el,ﬂl,rz,elz,ﬂaz) where rys 61 and/ﬂ& are the spherical polar
coordinates of Electron 1, r, is the radial coordinate of Electrom 2,

and 6 andldiz are defined such that

12

COs E17= @567&3562‘(‘5”’767 S19 62 COS(¢/ (3. 1)

and
SING12 5005 = Sin(B; B )si146a. 3.2

In terms of these coordinates the wave function c;st:t%,A:%) depends

on only Ty T, and 912 and can be written as

@C’\JW'CZ)- @Cﬂ/ 2, 7’2) (3.3)

Therefore, in the following discussion the coordinates 91,‘ﬂ1 and/ﬂiz

will be neglected. The‘Schrgdinger equation for any S-function can

be written aszoa
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1. 2X5) 1 _ 1 %) 4
2+ }V72 < 2V2 Y

A 1 2
~ 2 2 2 )5/*)@72}_(;7? <SM@1 gﬂ( 20 %,682)=0,

* Lz 'V72AE (3.4)

It will be assumed that the wave function is normalized to unity. The

electronic interaction potential is, in terms of the new coordinates,

4 7

nT [T anawe,T o
and can be written a521
19, 0]
’ri 2 1 IDL (%5612) (3.6)
12 = V
L=0 r7°7

where the PL(coselz) are Lengendre polynomials, and r< and r>

are the lesser and greater of r. and Tys respectively. The wave

1

function can be written in the form
0 Z_ , 7
@(’?,Vz,@ﬁ)z LZ?; %C@, V2)<°2—,-2t-‘ sz Ceostrtd.

where %(P},Wz) will be called the S-component of the wave function
and @L CVHVé) the L-component.

The exact wave functiocn @C"},Vz’,@;z)is the solution of a rather
complicated eigenvalue problem, eq; (3.4), and cannot be obtained in
closed form. However, one can obtain a considerable amount of

information about @CV;(Vzlém) from a perturbation solution of




eq. (3.4). Even though the perturbation equations cannot be solved in
closed form, they are much less complicated than eq. (3.4). The
perturbation method of solution is based on considering the electronic

interaction potential 1/r., as the perturbation. The term 1/Z

12
multiplying the 1/r12 in the Hamiltonian measures the strength of the
electronic interaction relative to the central field. Therefore, the
natural perturbation expansion parameter is 1/Z, and the wave function

and energy are to be expanded as

)

o h
?Ckh"ién): Z (‘ET) ?C"},G,&z) (3.8)
n=0

and

oo n o
F=2](%)E” 0.
n-=o

with the following definitions to fulfill the normalization condition

<Cp(°)/ ?5/0}>:/ (3.10a)

of eq. (2.2):

and

4 (?)/"'} ?Cﬁ> =. (3.10b)

Such a perturbation method of sblving eq. (3.4) was first used by

Hylleraas.20b Even though 1/r12 is by no means a small quantity, the
use of 1/Z as an expansion parameter is justified. The wave function
and energy expansions, eq. (3.8) and (3.9), are analytic functions of

1/z. Knight and Scherr22 assert that the energy expansion converges

21



absolutely for all Z» G.77914.

The zero-order problem is cbtained by neglecting the perturbation

1/r
/ 12
is just the wave function discussed at the beginning of Section I.
The zero-order equations are thus the hydrogenic eigenvalue equations
for the hydrogenic orbitals from which the zero-order wave function

is constructed. The zero-order wave function, eq. £1.3), can be

rewritten as

(0) |
Chyi,8m) = 15Cr)15C) £oC0s8m)

V2~

and also as

&b) (6/

9%,8..)= %) B, (cosbrz) (3.12)
vz

with all other zero=-order L-compecnent functions equal to zero for

L;} 1. The zero-crder energy (which is not the energy of the zero-

,
, . . o
order wave function discussed 1n Secticn I} E\ ) is

E “ ——7, O a . (3.13)

The hydrogenic 1s orbital appearing ir: the zero=-order wave function
is just the zero-order intriunsic orbital of the ground state.

The first-order wave function is

C7) (1 1 _—
2 rs)= 2 D) (Lerl) R (a0

22

entirely. Therefore, by definition, the zerc-order wave function
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where

< q)‘;&/ @:ﬂ >::O (3.15)

to satisfy eq. (3.10b). The other first-order component functions
need not be orthogonal to the zero-order S-component since the angular
functions take care of the orthogonality. Substituting egqs. (3.6),
(3.8) and (3.9) into eq. (3.4), equating to zero the coefficient of
1/Z, using eq. (3.14) and extracting out the coefficient of PL(coselz)
by integrating over angles gives the following set of uncoupled first-

order differential equations:

/4 Cr)+h, (5)- E/"’/‘?G’

7 () (o)
o (o) - ”905]5’) %) =0

(3.16)
where
1 %)
ALCk)z ‘QV%—g"'L(&w) © @an

2>

The first-order energy E(l) is

E “_ < SLW/Z-Z; / C?)zo,> (3.18)

and 1s equal to

E "= +—j,§ a.«. (3.19)

The energy of the zero-order wave function discussed in Section I is

equal to the sum of E(o) and E(l). The symbol széj in eq. (3.16)
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is the Kronecker delta.
From the seccnd-order equations, which will not be written down,

2 .
the following well-known expresgsions 3 for the second-order energy

can be derived: ( )
(2) C
Fo= § E,
L=0

where

(2) 7 : ) bl ‘
EL :m <q);_ /f;m/ CZﬂOOI> (3.21)

(3.20)

or

(7,, <q); ) /44. (V‘?)—(AL ("z)__g‘/oz/qj[_((/ (»7
2 . @
173077 < Ulyny | Ea B>

(3.22)

It is convenient to write the first-order wave function as a sum
of two terms: the single~excitaticn part and the double-excitation
part. These excitations are nct physical processes and must be
understood in the following way. 1In zero-order, each electron ignores
the presence of the other electrun and assumes a spatial distribution
characteristic of a hydrogenic atom. In first-order the motion of
each electron is influenced by the presence cf the other electron.
Therefore, the spatial distribution of each electron is altered from
the zero=-order distribution. The alteration of an electremn’s
distribution can be pictured as taking place by allowing it to
undergo virtual excitations from the zero-order orbital. These

excitations are the single excitations since the other electron always




25

remains in its zero-order orbital. However, the detailed motions of
the electrons are not independent but are correlated. Therefore,
there must be a further readjustment of each electron's spatial
distribution by means of some cooperative mechanism involving both
electrons. This cooperative mechanism can be described by allowing
both electrons to undergo virtual excitations from the zero-order
orbitals. These excitations are the double excitations for which
neither of the electrons remains in the zero-order orbital.

Formally speaking, the first~-order wave function must be written
as a superposition of an infinite number of configurationas. Let
?.(r\) be the complete set of radial hydrogenic s-orbitals with¢1Cr)
the 1s hydrogenic orbital. The S-component of the first-order wave
function can be written as

tz)m % (v

) = & " Ciy @) Pi(a) (3.23)
/
where the asterisk restricts the coefficients such that the zero-
order configuration does not appear in the sum. The expansion can

be separated into two parts:

G) (1) (1)
CZ) ’5) = CZ; C"?,"z/ 1 qj C, ) (3.24)
O0(OFE

where the single-excitation part of the first-order S-component has

the form

(9 (11 O
CVE»’;) = 15C) Fen) 1600y 15(3)  aas)
0.8

The function fa'ar) has the form




26

5O |
]_—:(’I) _ 27 C ,(4)¢<1,~) (3.26)
) I=2 7T

such that

<7S/F(4}>=O. (3.27)

The double-excitation part cf the first-order S-component is

1l pn (1)
(.13) = Z C).jv 9?(“47?97'(“2) (3.28)
OIDE ,)7:2

and is strongly orthcgonal to the zero-order orbital, i.e.

(1)
£ 15¢) @f))c;g»/% =150 Eif

1, —_ (3.29)
5 30

where the ry outside the Erackets indicates integration over that
variable. The first-order L-components for L;Z 1 are all automatically
double-excitaticn functions since they do not contain the zero-order
orbital. Thus, all of the single excitations are condensed into the
S-component; The wave function @C—(},Zg) can likewise be analyzed
into single and double excitaticns. The discussion, however, will be
restricted to the first-order problem.

(7)

The equations for the single-excitation function f:}:pﬂ) can be
obtained from the first-order equation for the S-component, eq. (3.16)
with L set equal to zero. Substituting into eq. (3.16) the zero-order
wave function from eq. (1.3), the decomposition of the first-order
function from eq. (3.24), the form of the single-excitation part of
the first-order wave function from eq. (3.25), multiplying by the zero-

order orbital and integrating over ite coordinates one obtains with the




aid of eq. (3.29) the following equation:

[l)oocr) T ZJF(”

[<75("57 1,7/75(’:)> gm)]ﬁ((?s)io;

where E(l) has been given by eqs. (3.18) and (3.19). The above

9a,9b which gives

(1) %[Ei (-24) = 2”“3,]
/:(h) =9¢ —-.;3_6 ‘Zﬁ7] ﬁj

+Sr-23 3
6 4 32 N J /‘72 /[ (.31

where 2( is Euler's constant equal to 0.5772156649 and where Ei(-2r)

equation is identical to the first-order RHF equation

is the exponential integral defined as —f2 5'/5 ﬁ.s

The equations for the first-order double-excitation functions
can be obtained from egs. (3.16). For the cases Lza 1, eq. (3.16)
is the desired equation since all L-component functions for sz 1
are double-excitation functions. TFor the case of L = 0, the single-
excitation part of the S-component function must be first removed.
This is accomplished by substituting into eq. (3.16) (with L set

equal to zero) the decomposition of the first-order S-component from

27

eq. (3.24) and the form of the single-excitation part of the S-component

from eq. (3.25). Using eq. (3.30) to simplify the result, one obtains

the desired equation. Thus, for L;;O, )
7
7

[AL(‘?) -+ 41_ (’2/ - E o’] L'gg-“e)

1 L @
te & (v,,m)@;—;q) Pitai= o 52
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where QL (V,}( V;) is the following projection operator

Q (5= [— [7503)>dy0<15 (%))
~[1sCa)> 0 <75C2)]
—+ 1507) 15002)> de, 0 < 7504 )75%)f

(3.33)
which guarantees that the solution of the double-excitation S-type

equation is strongly orthogonal to the zero~-order orbital., The second-
order energy can be separated into the single-excitation and double-
excitation contributions. One has

(2) (7—) e
E L <E Jlo-é EL?DE (3.34)

where

Eoje = LB BT aw

and

[2)

7 (‘1)
ELooe AT <Clﬁ4 OF ¢7L+7/CZJ > (3.36)

or

(2)

LOE = <Czjm (7’V‘2]/4L( )7‘4 (4 ‘E/C? WD
'/'/{Z.?( (w /r 01‘7 (0/ >(3 37)

The separation of the first-order problem into a single=-
excitation part and a double-excitation part has been easily accomplished.

The second- and higher-order perturbation equations do not separate
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quite so neatly, but they do separate. This separation is akin to the
usual separation of the wave function into the RHF part and the

4 . .
? Even though the single-excitation function is

correlation part.
not the RHF function and the correlation function is not the double-
excitation function, they ére identical through first-order in 1/Z.
Both the single-excitation function and the RHF wave function serve
to adjust the spatial distribution of each electron to the average
field of the other electron. This adjustment takes place one electron
at a time. Thus, the first-order single-excitation or RHF equation,
eq. (3.30), adjusts the spatial distribution of Electron 1 to the
average field of Electron 2. The average field of Electron 2,
<15(V'2)/';.L7/ 75 (Vz}>v_ 5 is computed with the zero-order
>

orbital which is previously known. The second-order distribution

of Electron 1 would in the same way adjust itself to the average

field of Electron 2 which is calculated with only the previously
known zero-order and first-order orbitals.

The details of the electronic motion, to first-order, are
contained in the first-order double-excitation function which is
identical to the first-order correlation function. In the next
section the distinction between the single-excitation processes
and the double-excitation processes will become clear. It will
turn out that each correlation or double-excitation NO satisfies
an integro-differential equation which shows how the two electrons

must simultaneously adjust their charge distributions to each other.
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IV. PERTURBATION EXPANSION OF THE SELF-CONSISTENT FIELD
EQUATIONS FOR THE TWO-ELECTRON ATOMIC IONS

The perturbation method developed in the previous section will
be applied to the general N-configuration SCF schemes discussed in
Section II. The procedure to be used will be to transform the exact
firgt-order formalism of the previous section into NO form and then
to obtain the first-order formalism for any N-configuration SCF scheme
by setting equal to zero tﬁe appropriate parameters.

Since the ground-state wave function can be written as a sum
of L-component functions, eq. (3.7), the NO's can be split into sets
according to angular symmetry. Since the first-order equation can
be separated into different equatiqns fof each angular component,
the NO equation can likewise be separated into sets of equations
for each L-type NO. The parameters //4ﬁéi and the natural occupation
amplitudes %/& will be thus 1abe1ed/ul»£ and 47‘{ . Since the
first-order equations are radial equations, only the radial parts of
the NO's need be considered. They will be labeled as ><£Y%£ , and
the angular dependence will not be considered. The L-component of

the wave function will be written as

G = 2

()= 7)Y (n (4.1)

Lo %) 557 07%)[% 7(5;\’
4y¢j/>¢z%>:(j7‘£- | 4.2)

Natural orbitals belonging to different component functions do not

have any special overlap properties. The normalization condition
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for the exact wave function, eq. (2.2), is
7= Z /)712 ' (4.3)
L::O :7

To effect a perturbation expansion of the NO equations one must
expand the NO's, the parameters /ML£ and the natural occupation

amplitudes 77 { in powers of 1/Z as

%OZ Z <§) 7(?“’7 ’ . 4)

Myf= Z (3%

(4.5a)

and

00 v O
p= 2 3)" 18 -

The zero-order L-component function written in NO form is, from

eq. (4.1), o0
(9 fo] ‘) /o)
LC‘?"FZ): Z O?Lg 7(("'1/ 7( (4.6)

and written in terms of the hydrogenic orbitals is
¢ol

hnt = do tseuIT).

Comparing the two forms leads one to the conclusion that

(o)_._ 7.1.[:0/‘2:7
‘R 0, otherwise (4.8a)
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and
(v)
7(00")2 1s(r) .  (4.8b)
7

The first-order S-component written in NO form is

() ‘)
Oc‘?,‘”z)z Xo7 (7))(07 (r2)+Xo () X, 7%)

(7)
77 "7))(07 (“2)
’——7 (1[ /o)
! % ’)70%(7( £ XZ/("Z) (4.9)

and written in terms of hydrogenic and single-excitation orbitals is

% C ,71»75(7)/:,2/+[‘( )75( 2 ). (4.10)
Comparing these two form yields, keeping in mind eq. (3.29),

/}7 K 0, 2= 7 (4.11a)
0k =

non-zZero, o therwse
and

/( ((-:L} F( 7. (4.11b)
There is only one intrinsic NO and one intrinsic natural
occupation amplitude for the ground state. They are )((74 and 4707
respectively, and as far as zero order and first order go are defined
independently of the correlation NO's and correlation natural
occupation amplitudes. The zero-order and first-order intrinsic NO

and intrinsic amplitude are common to all first-order SCF wave



functions. (The second- and higher-order-intrinsic NO's and intrinsic
n#tural occupation amplitudes depend on the double-excitation part of
the wave function.) Therefore, the following discussion will be
concerned only with the correlation NO's. As far as the intrinsic NO's
and the entire single-excitation problem is concerned, the NO formalism
does not offer any particular advantages.

The real advanté.ge of the NO form manifests itself in treating -
the double excitations. From the first-order part of eq. (4.1)

(neglecting the single-excitation part) one has that
S § AXC
r 67 (4.12)
L,06 7% AKX - o
K~ KL ﬁ
where kL is equal to 1 for L 21 and equal to 2 for L = 0. One has,

from eq. (4.2), .
4 X‘loj/. /XL";% S= 09{ | (4.13)

for all NO's, j3, k> 1. The equation for the correlation orbital

)(C") is obtained by. substituting eq. (4.12) into eq. (3.32),
/0)

multiplying by XL(P;) and integrating over r, . Thus, for L} 0

and for k >k

/;u"’ ROV EIACIE )L,ef]&m)

- %Y (2]
_Z )L‘£7 X( =0
= ®L L7

T+A R

32
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where the first-order Lagrange parameters are

(7) 1 7o 0
>L'£j /ML(]} [E J‘ﬁj "(Xzé)/4L/)(°/§/15)

and the average interaction potential V (r ) is

VL.(V%/: <75(”‘2)/i ("7)
rm) ?cm/vsmb

The r, outside the brackets indicates integration over Tys and

(4.16)

P(1,2) is a permutation operator which interchanges r, and r, in the

functions following it prior to integration. The quantit (r,) is
P . y qp(ry

the following projection operator

i ()= 71— [1s (o }>OQO<75( )/(417)

which insures that all s-type NO's are orthogonal to the zero=-order

intrinsic orbital.

The infinite set of coupled equations (4.14) for the zero-

order correlation NO's can be obtalned by requiring the functlonal

?Cf)f; A,...} , where
(2 @ A (2
% Tgol= 2, 5ok Thgp e

with

Beflel= 2(uly)<hg /b lor>
. (/arq/) E/o)
w2 wfy <&plVilf>)

(4.19)



to be stationary with respect tc variations in all of the 44 cr)

subject to the constraints

<1€% /r/;]“>= d\ﬁj (4.2C)

(2
for L>O, j,k 2k The lowest stationary value of 5[4{_',,,}

oL
(y

will be denoted by f (/ﬁzf ’“.) and occurs when each -6_4 fr)

(o)

is equal to the zero-order k-th A({ XL(", k/Z kL . Since each NO is

/)

a function of the infinity of parameters/L{L% s k;kL, so is the

(2)
quantity ’8 ¢ 7 ., ) which can be written as
L /L{L"

{ 2l (y ‘ 44 2] (7 (4.21)
L Sl )= zéﬂ% (s o)

'g(EIC/MLZ o )= zéa“’) <X /4 /X,/o/
_ Qafq/) £ (4.22)

T 24, y ()(Lé/l/a /)Qﬁ)

The L-component of the double-excitation part of the second-order

where

N (2) (7’
energy, EIELI))E , is obtained by requiring €L C/&‘Lé,_"") to be
(2

stationary with respect to variations in the parameters/{,{ (R
()
The set of first-order natural occupation amplitudes Lﬁ is that
-

Ie (t/[
set of values of the/b(éz\ for which ‘gL /atﬁl_,.--} attains

its lowest stationary value, i.e.

(7—] Ve
EL e = f 42 oe). (4.23)

34



It is to be empha51zed that the stationary p01nt for g?"(/azé ,“,)
¢

el

is not a stationary point for any of the £4A /(4‘4 ).,,)) eq. (4.22).

One thus has

E (2) . & E (2)
LOE = %ZL LA (4.24)

where
(
/)74_ ”) /o) / /o) (4.25)
with
(1) — /o) 1/ /a/
/)7L% = <X,, 2/ /f( v (4.26)
24X /4. /x[ %> -F
which is obtained by requiring
(2) ¢
)Y ) . o
DM %
It is shown in Appendix III that
(1)
4] <O (4. 28)
'
(2)

for all L and all k> 1. Therefore, from eq. (4.25) all of theE £
must be negative and thus, from eq. (4.24), all second-order energies

must be negative, i.e.

(2)
EL,OE SO- (4.29)
(1)

All of the diagonal Lagrange parameters >\ Lﬂﬁ evaluated at the
stationary point must be positive since in general, from eqs. (4.14)

and (4.22),

35
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(2) (7 e
Cuh= 2aig higt ~ BV ET e
From eq. (4.14) one can see that the case for which all the /(ALM/
are negative corresponds to the potential Lél(LD)being attractive.
Thus, positive values of the diagonal Lagrange parameters correspond
to bound-state solutions of eq. (4.14) and to negative second-order

/0)
energies. The lowest energy solution of eq. (4.14) is >( (¢¥) and is

q (1) L

associated with the highest positive /1L7£¢£'

The perturbation formalism for the N-configuration SCF schemes
can be obtained from the NO formalism by setting all but the first N

(7

parameters /4‘4/2 equal tc zero. The zero-order formalism for any
N-configuration SCF scheme must be identical with the exact zero-order
formalism. The first-order RHF formalism is just the single-
excitation formalism of the previous section written in terms of the
zero- and first=-order intrinsic orbitals. The single-excitation
part of the first~order fcrmalism for any SCF scheme is identical to
the first-order RHF formalism and involves only the intrinsic basic
orbital.

To separate once and for all the single-excitation part out of
the first~order formalism of any N-configuration SCF scheme for the
ground state one can proceed as follows. For all pcssible N-configuration

1)
wave functions (£, g%)one has, for the grcund state,
N

(2] 77)

1
p G082 = s T (5 6)

(4.31)



where

(1)
2L471)3
wl,,0:2)= Z ,;/ ) ((4.32)

L=0 NL

The S-component of every first-order SCF function can be divided into

the single-excitation and double-excitation parts, i.e.

(7) f7)
) () = ,;+ (iy( ,z/ .3
where
(1) (7) -
an) = 7505) Fezyt Feo,y 755 ). @3
M0, S5E

The double-excitation functions are thus, for LEZ o,

(1)

~ (7] /o)
P %ZW A X %X"i;g -

where the sum includes just the zero-order correlation basic orbitals.
The intrinsic basic N-orbital ><;ng is, to zero order,

/0) .
(r) = -
XMJ 9 e (4. 36a)

and, to first ordef, (see eq. (3.31)),
(7 $LErCar)=hamy ]
X)) o —_3.‘ 24 - 2
vor T2€ % [ ¢ - e

t3r- 23 43z

(4. 36b)

L 6050’2) .
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The intrinsic N-occupation amplitude is, to zero crder,

o)

/7;//07 = 7 (4.37a)

and, to first-order,

(1)
—_ (4.37b)
(}7 01 O.

. 9a |
The single-excitation contribution to any SCF second-order energy 1is,

for all SCF schemes,

(2)
3
Erose = -2 Zh(Z) au ww

or

(2)
E’%QSE': -0 777 005 Zg a. . (4.38b)

7,
Setting all but the first N parameters /0{ ’ equal to zero
R
splits the infinite set of equations, eq. (4.14), into two sets:

4"
the finite set for the basic correlation N-orbitals >( (-,3}

*SES M, L2 iz
!“1%4( }—fVL(Vf) J/uz é] ,

) (") /o)
Z pedy X'cn) -

At =0 )
and the 1nf1n1te set for the complimentary N-orbitals )( (ﬁ\)

M LR
az M +7

(4.39)



—~ (1) ‘ (4}

[V (") }l/wwt]x v) + )V,Laj X(k/] (4.40)

om——

where, from eq. (4.13),

<Xk [Xiej >= I%5 it

LXuira [X14>= dat oy
ant

<)<P/:)a/ ,;oz/4> =0. (4.41c)

From eq. (4.15), one has

(1} (.,} 7
>‘N,147' /[ Hy-< Kb lh, e S

.
" (1)
ueti= m,% <Xuut b [Xieg >
| -+ <)(,of'4% [V [ Xﬁ?’zj> (4.42b)
and also

) — (o —_—
JMlaa = <X/v,)m [V )(Af’iq> (4.43)
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and

(1] — o
)p(La%‘“ “/L’LA{)(/VM /4 /)(”24> (4.44a)

1\ (1) —to)
x/v,/,a% = ()(p/ola/l/l_/)(;(o‘}%>‘ (4.44b)

Similarly to the case of the NO's, the equations (4.39) for the
/o)

zero-order basic N-orbitals X [V*‘/A Z < sﬂ/, can be obtained
L

N (2
by requiring the functional 92} ); LZ) .. LP} where
AL

/v L 5[£ el 74#/1.5 Z }2[;) ;Tfu@f (4.45)

p.)('?-)
with the JC/.;Q ;-,Cﬁ; given by eq. (4.19), to be stationary with

respect to variations in all of the ka subject to the constraints

given by eq. (4.20). The lowest stationary value of the functional
/)
is attained when each £ 1k is equal to XC&»} and will be denoted by

(z)

Ay
(L/ r,,, : (2) (1/ »
L TP
TRL

with (4.46)

‘g ( Z/ ) ) ) o)
/f‘u@z.,m/ Mg, )= 2@ ) 1,,44 /L /Xp,z, >
- (4 )? £

+ 2 ufy ¢ “’A/I/L/X" ¢4>

(4.47)



(
which is a function of the parameters /L{LZ P ‘AL \(,g \</Vl. .

The L-component of the double-excitation part of the second-

£(2)

order N-configuration SCF energy, N,L,DE

is obtained by requiring
. (2) .
the function L to be stationary with respect to variations
/

in the parametersﬂfz. There may be many sets of values for these
(2)

parameters which lead to stationary values for oL but the
/

required set is that one which leads to the lowest stationary value.

Thus,
(2) (2)
E/V/L/OE Z E % (4.48)
'wberé
4
E,(;z% qu@< /°/ / 1014> (4.49)
with

07 (ﬁ£ . _ <X/61 /{/L /X,ﬁ:/z >
e X =y
Xu 14 /4L/ Aé P

which are the special values of the parameters obtained by requiring

JEs

50)

= . (4.51)

2/“4%

Just as the quantities *81_& the pL%_ are not stationary
for those values of the parameters which make plg_ stationary.

Similarly to the NO's, one has that

(n
/7&‘,4 \< 0 (4.52)
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and

E (2) ¢
peo= £ 0 (4-53)
(2)

since all are negative. All diagonal Lagrange parameters
ML

evaluated at the stationary point are positive since, in general,

- k= Ltk Vo a ol E

The equations for all zero-order compllmentary N-orbitals

X/OI can be obtained from the functional}i 5-{} , where

(+)
56\;(2/51[{-241[/%/‘[> (4.554)

N, LA
by requiring it to be stationary with respect to variations in ‘the

function £ subject to the constraints

<[/1[>= 7 (4.56a)

<’(/X,{:i,( > =0 (4.56b)

for kLsk\<NL. The values of the function %@L ~are zero for
all complimentary orbitals.

All of the zero-order correlation basic and complimentary N-
orbitals are functions of the parameters /{,{ZZ . This dependence
will be discussed in the next section in connection with the first-

order EHF scheme.
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V. THE ZERO-ORDER EXTENDED HARTREE-FOCK ORBITALS

The EHF scheme is such a SCF scheme whose wave function consists
of two s-type orbital configurations and one L-type orbital configura-
tion for each 1.2:1. The EHF scheme involves one correlation basic
orbital of each angular type andis thus the simplest SCF scheme which
takes all types of angular COrrelatién into account. The DODS wave -
function consists of two s-orbital configurations, which are,

through first order in 1/Z, identical with the EHF s-orbital
configurations. The DODS wave function is the simplest'radial
function which takes radial correlation into aceount. Thus,, in
discussing the first-order s~type EHF equations oﬁe is also discussing
the first-order DODS equations. In this section the first-order EHF
equations12 for the ground state will be discussed, and the relation-
ship of the zero-order EHF orbitals to the zero-order NO's will be
investigated.

The single-excitation part of the first-order EHF problem can
be factored out and the intrinsic orbital and occupation amplitude:
disposed of as in the previous section, eqs. (4.31) to (4.38b). The
formalism for the zero-order correlation EHF orbitals can be obtained
from eqs. (4.39) to (4.56b) by writing "EHF" in place of "Nf and by
limiting the ranges of all indices to the one value kL.

The one basic correlation EHF orbital of each angular type is
just the first correlation NO of each angular type with all correlation
parameters//14 QZZE except the first one set equal to zero. The

complimentary EHF orbitals are all the other NO's with all but the
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first correlation parameter set equal to zero. Suppose, however,

that all correlation parameters except the k-~th one were set equal

to zero. In such a case the k-th NO would become an "excited" basic
EHF orbital while all other NO's would be turned into complimentary EHF
orbitals. Therefore, one can have many different EHF orbitals and

thus as many different sets of complimentary EHF orbitals. In

Section II it was always assumed that all but the lowest few
correlation parameters were set equal to zero in obtaining basic
orbitals from NO's. Excited basic orbitals such as the excited EHF
orbitals mentioned above were not considered in Section II.

The zero-order basic correlation EHF orbitals will be denoted

(o) ()
by){ ~/ and the first-order EHF occupation amplitudes by ?quf(
E?Hfﬁlﬁi
lc;a kL. The set of zero-order EHF orbitals complimentary to the

/) —(0)
basic EHF orbital | - ,will be denoted ( / a .
E(HG‘- HFéLa’

The equations for the zero-order basic EHF orbitals are, from
eq. (4.39),

%)

[;{A “ 4 (w)+ V(4 )ﬂfﬁf-‘/%%])(“/ =Q (5.1)

EHE L4

with no upper limit on the index k. The equations for the zero-
order complimentary EHF orbitals, from eq. (4.40), are

[VLO’)" :\L(.:{HF ,Laq _‘(o}
EHF»@ L&

(5.2)

m[q/
= gEHFI 144, X 01'14
where the only restriction on the index a is a # k. The definitions

of the lagrange parameters appearing in the above equations are
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given by eqs. (4.41la) to (4.44b) of Section IV.

It should be noted that the equations for the zero-order EHF
orbitals are all uncoupled, i.e. each basic orbital safisfies an
equation independent of all the other basic EHF orbitals. This is
to be expected since there is really on1y one correlation EHF orbital -
the lowest energy solution of eq. (5.1) (i.e. the solution associated
with the highest positive )EﬁF‘L;{() All solutions of eq. (5.1),
the lowest one and the excited ones, are tied to the ground state by
the form of the potentials VL(rl), eq. (4.16). In view of the
connection of the EHF orbitals with the NO's, one can consider the
parameters /4A ;;2~ as different entities or alternatively, as
different values of one and the same thing.

Since the basic and complimentary N-orbitals are special cases
of the NO's, one would expect the general characteristics of any
N-configuration SCF scheme to be the same as those of the NO scheme.
In other words, one would expect that the functional form of the
k-th N-orbital and the relative magnitudes of two Lagrange parameters

)p/ {7’ and two functions 8/“,% to be the same as for the NO's.
This supposition can be made plausible for the zero-order EHF orbitals
in the following manner.

Consider eq. (5.1), and let it be rewritten in the form

[% ( 7,/,,”1) ]EﬁFL4'é]XCb') .3

where

KC.Cay plh)= M1 % AETACH (5.4)




For a fixed wvalue of the ;a:ameter/ﬂ{% the operator %L is
Hermitian with respect te ali suitably integrable functions. (The
functions must be orthogonal to the 1ls hydrogenic orbital if L is

equal to zero.)} Eguation (5.3) is therefore, for a fixed value of

7

the parameter, an eigenvalue equation with )EH(", é%{ as eigen-
(s)

values and the )( () as eigenfunctions. The eigenvalues will
EHE ¢

all be real and, for negative values of the parameter, will be

positive. The eigenfuncticns will be mutually orthogonal only for
1 val £ the paramet (1) ana 1,7 i £

equal values of the parameters 1, a /M; , since, from

eq. (5.1),

(it =20 is) e
Enee Eﬂr‘;éd7)<xfﬁﬁlé/xen54j>=

- </MW M/)<XE/7FL{/4 /X «m(;).

Each of X /o); al d ) { 1 ' £ £
ach o (+ an Ere L s a function o
L 4 and( £,

(1)

only the one parameter /(,( In the limit as the parameter

approaches zero, the eigenvalue equation, eq. (5.3), approaches

the equation

[W.(V] ;1/0) vy )((ro =0 5.6)

ENF EHE LA

where the limiting orbitals and Lagrange parameters have been

/o) (1)
designated as )((V‘ O) avd) (o) 4/{, respectively. From eq.
(4.47), the limltmg va1ue= of rhe fEhF (_K are zero for all k.

The '1imitiﬁg orbitals are just the zero-order complimentary RHF
—(0)

orbitals X €#) ", Writing
RHF LA



2 7
D(L% = 4’ (7) .7

/ 2L+ o)
)E;FJ L RA

and

)( /(64*' o)ﬁ _e‘:’hél& (k) (5.8)

HF=)L
and differentiating eq. (5.6) twice with respect to r, gives the
equation
o8 26 (
(R L [+ =
j'l_d_ﬁ,_’..+0<£f 54(“) )C,e(")(sg)
r

which can be solved for L=0 to give, k:i kL R

(7) )(/ (bQH& 6? ‘:) ' '
X {(l;o) M, £ ¢ 710)
EHF',O& r --_ (/h '/‘X)\/ é(ke"'y

where o(;fg is the k-th largest solution of the equation

Viat) _ 2 (], x4
Gten~r (W ry)  ow

and must thus be positive. The functions JO and Y0 are the ordinary

Bessel functions26 of order zero of the first and second kinds,

respectively, N Ok is a normalization constant and is Euler's
(o
congtant. The orbitals,krfwbo}f%have all been constructed to be
' EKF,0

orthogonal to the 1ls hydrogenic orbital although the solutions of
eq. (5.9) need not be so. The k-th orbital has k-1 nodes. If the

orbitals are arranged according to increasing number of nodes,

47



n, /0)
XCJV;O) , having fewer nodes thanX (ry ol if j <k then one would
EHF0 o EHGIk

have, from eq. (5.7), that ro) /o/

’ ’ F,0797 > N kAR
Although the solutions of eq. (5,9) could not be obtained for L;E 1,
one supposes that would have the same kinds of properties as the ones
discussed for the case L=0 above.

In the case that the parameter a roaches negative

P Ay _p< PP , neg

infinity, all of the diagonal Lagrange parameters %EHF&Iépproach

positive infinity. However, the quaﬂtltles€EHFLé defined as

@/ (1)
€EH€L£ = EHF/Z%% (5.12)
1)
. Ay,
remain finite Ior/(,{ 1) non-zero. The limiting orbitals and
X2, ana €70 )
limiting epsilons will be denoted / and (oa) for
/‘(f_,/-é EHE ¢ Ml’k
equal to negative infinity. Equation (5.3) thus becomes the limiting
equation
[, | - (0O
(v ) € /& X(”OO} =/ 61
EHE L

for k/>kL and is just the equation for the hydrogenic orbitals.
1f ﬂg (h) denotes the k-th hydrogenic orbital of L-th angular

type, one has that

X C y0o) = Cﬁﬁ (r) (5.14a)

EHFL{

and

(7]
CW) -_ — 7 —
€EHF, (LB~ T2 (a +£) z (5.14b)
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Therefore the limiting functlon>(cr 00) has k nodes for L;E].and
EHFLK

k-1 nodes for L = 0. 1If the orbitals are arranged according to

increasing number of nodes, one then has the relationship

6?(7/ (ﬁ/
/ (00| :> 629/ where the bars indicate
Ef1f54:7 fff(f.L
absolute value. This orderlng of the epsilons is in the same
1)

direction as the ordering of the /A /o
Kotk
The structure of the eigenvalue problem, eq. (5.3), is the same
for /Ah ol equal to zero and to negative infinity. (Since for
L%

1)

positive values of the parametersJAA 44 the second-order energies
are positive and the Lagrange parameters ﬂ{_:(i(frcf*](are negative,

(5.3) approaches the hydrogenic equation with positive and thus
continuous eigenvalues in the limit that //L(ZZQ. approaches positive
.infinity.) The number of solutions does not depend on the particular

. 1 .
value given to‘/01£;% nor does the nodal structure of the solutions

or the ordering of the eigenvalues. Both limiting forms of the
/o) /0]

orbltals,><'(W '0) , and X ¢ ¥;po) _ behave like hydrogenic functions
EnF ik EHEC o)
near zero which is just how the orbitals)( (v) must behave. By
EHE K
writing out the solutions of eqs. (5.1) and (5.9) one can show that
for a » alue of ¢
. ny value o /lA /
o)
/ (r) ‘
o (Xod )~ st o

r—=>0
F‘L

Therefore, it seems reasonable to assume that the structure of the
. o ty
eigenvalue problem, eq. (5.3), is independent of the parametere/[4q4.
The above discussions lends some plausibility to considering

the k-th EHF orbital as just the k-th NO with all but the k-th
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/)

parameter//LlL1% set equal to zerco, and similarly for the Lagrange
(2)
parameters ( , Lﬁé the functicns Er-(FL{ and the energies
(2) (0)

EHF& One can thus consider the functlonXC DO , eq. (5.14a),

as the k-th NO with all parameters set equal to zero except

param q P /alﬁ
which is equal to negative infinity. Since these limiting orbitals
(together with the ls hydrogenic orbital) form a complete set of
one~electron functions, one would suspect that the zero-order intrinsic
and correlation NO's formed a complete set of one-electron functions.

Ch (/|

This is a reasonable conclusion since the operator %CL A eq. (5.4),
is a Hermitian operator. One would also suspect that the exact NO's
X ) discussed in Section II form a complete set of one-electron
functions.

/o)
The limiting functions X ( ¥70/
EnAF

L4’ eq.

as special cases of the NO's and therefore, (together with the 1s

(5.10), can be considered

hydrogenic orbital) as forming a complete set of one-electron

functions. However, since eq. (5.6) can be rewritten as
1 (0]
=3 X500 = " oo
v { ( e X (o)
ik EHFR 7 € Enr ok ) (5.16)
~ 4 Do 1504
where

Ep = 18051150 [ [ 1504 )X;/f};fa{,, >, 61

o/
the limiting basic orbitals )( (ry ol (which are also the zero-

EHF,L
order complimentary RHF orbitals) are (constrained) natural orbitals
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2t . 1
of the functions [—%&—— &~ , L0, with —= as the
I"7L‘ +7 - b

natural occupation amplitudes of these functions. In fact, from
eqs. (4.40) and (4.55) one can see that any set of complimentary
orbitals is a sultably constrained set of natural orbitals of the
function (*"—“ e 7€ ) The unconstrained natural orbitals of
this function form a complete set of one-electron functions. Since
1. o _z_

. -1 A
the natural expansion of (‘”7’2. e e (and thus of V.72 )
requires 'a complete set of functions, one suspects that all the
natural occupation amplitudes ?ﬁ of the two-electron wave
function are non-zero.

(2)
The function g"ﬁ , eq. (4.22), is a function of the infinity

of parameters/(,{ (7} which can be considered as coordinates.

L
Thus, each L(?é can be considered as a surface in an infinite-

dimensional coordinate space. Each surface has extreme values

at those points whose coordinates /4( {2 satisfy the equations

/Mfﬂ /Oj //’L/X/_ /h (1) E/o}
+ 2 <xplVilxie

(5.18a)

‘%2%417%(/”[( v /o)/é /Xro/>
X /)(/O/

and, for i # k,

27% Y Lf; /o) M /o/ ><>XL& /X 0/ (5 18b)
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which were obtained by requiring

2E%
,}/‘4 o =0 (5.19)

for all i D> k.. (See eqs. (4.22) and (4.42a).) Each surface 8 %
P L

is zero along each axis in the coordinate space except the/L{LA -axis.
c®) “
The projection of ‘8[%\ on the /L(Lﬂ-axis is just the function
(2
/gfﬁfr’ L&,eq (4.47). At the origin of the coordinate space each
sur face L"A is zero. At the negative infinity end of the
(1
/4 L'k -axis it is equal to positive infinity which fact can be
deduced from eqs. (4.54), (5.12) and (5.14b). From eqs. (5.18) one
knows that there must be at least one stationary or extreme value, of
z) (2]
the surface f,_,A (or %EHF Lé ) along the/a L-& -axis.
let the lowest of these stationary values be called EEHFLf , and

let it occur at the point at which /at»ﬁ has the value 4751‘-((7‘4'
One thus has, from egs. (4.49) to (4.56), kz k., that

"” ¢ o .
EEHF;L4= (7l:fiFlLK <>(/(-:f; L /Vl‘- /XE;,Q'L/<> (5.20)

with

,E(Zz'-;m: _<)<z:rfr'1.4/\/l-/x&/°:<¢44)

C(5.21)
o)

2 <XE&F/.4/44 /X;%FM) £

which can also be obtained from eq. (5.18a). Since all WEHF‘

are negative (see eq. (4.52)), the values EEr"H‘; L‘( , kBRL’ must

all be negative and must thus correspond to minimum values of the




(2 (2
8[.1@ (or f HFZK ). The L- COmpOr(li;lt of the double-excitation
part of the second-order EHF energy EEHF} L,OE is

Y =L |
EHF L,DE Eﬁ/: L (5.22)

(=)
The quantities EEHFf.( k k + 1, are the second-order energies
associated with the excited EHF orbitals.
(2]
There are in general many other stationary values of '84,4

(1
lying off of the /Ltl.»)ﬁ -axis since there are in general many

70
solutions of eqs. (5.18). Since the EHF orbital» X Z“" 4 is the

S, LRy
lowest solution of eq. (5.1) (has the highest positive )tEﬂHf';L4ﬂ)

one must have
(2) 2)
fEh‘F/LgL \< f,\/ L’£ * (5.23)
17
This inequality can be demonstrated in2 the following way. The
function >( [r4 which defines ’&;/:41., eq. (4.47), can be

expanded in the set of solutions of eq. (5.1), i.e.

(o) (/6) ‘
o ST :
XN/‘Z) = 'Zé 0/7 X ¢+l (5.24)
J=*c

with

00
7:: Z 0/‘72 (5.25)
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It was mentioned at the beginning of this section that the parameters

] . . e .
{/A could be considered as distinct entities or as different

“,
values of one and the same thing. Up to now the parameter/a f!&
has been considered as a different entity from the parameter /ML
(7)
However, in the following discussion let /M [,é and/l/( - be

considered as partlcular values of one and the same parameter /4 (‘4‘)

Ther‘efore, eq. (5.1) can be rewritten as

54

(1) (1) s/
//;t AL. </"4) —{'VL(‘G) ")EHF/ L%k XE({:"LLﬁzo.(s.ze) |

From eq. (4.47) one has
()
¢ ,U,Lf )172‘7 D/ 6/7 <XL'HFLI //MM%L (e )+
-f [p_ )(4@/
Q’A m)z E7°) / EHF‘]% 2

and from ;eq. (5.26)

1/

) wi J 2 )
- 2 ‘ /'\ ’ e 5.28
med = LM 2 ] AcHeey] "/@t [4’) =
I=%e
Using eqs. (4.54) and (5.25), one has

%? (ZJ (aJ
A/L . EHF'LéL,—-

(7 @)
— ¢ '
= 2/(4 7! 2, (;lgﬁgajj")fﬁﬁlé (5.29)

(1
and since ,)SEHF; L@LZL is the highest positive eigenvalue of

eq. (5.26), eq. (5.23) must follow. Unfortunately, one cannot say

(z) (%)
anything about the relative magnitudes of fEHF,L*é and the /V/L‘4

for k>1& .




VI. NUMERICAL SOLUTION OF YHE FIRST-ORDER EXTENDED
HARTREE-FOCK EQUATTONS

Approximate numerical solutions of several first-order EHF
equations, eq. (5.1), were obtained. In this section the numerical
method will be described and some second-order EHF energies will be
tabulated

(]
Each zero-order EHF basic correlation orbital >< ) , kD k.,
ErF LR — b

was approximated by the following type of (truncated) expansion in

terms of the complete set of functions:iin (%) , 1l.e.

’\J[o]

g Z CL£ f(” (6.1)

- = [+]
y - . I o) . \ - - - 27,28
Tl functicns 4e£n) are the associated Laguerve Tunciions, ’

EITFi

2L+2)
f?& n! L Zi.( . a
(r) = —_— 2k - - (5.2)
z.nr‘ 1 (’).L‘t""l-fl)./ ( j ”(2 e

1 >0, and have the convenien: feature of possessing no continuum
Ve

contribution, (The functions ﬁfifsj are not exactly those of
references 27 and 28; for details see Appendix IV.) Some sample
calculations were performed using a scale factor, but since the
optimal value of the scale factor turned out to be very close to
unity no scale factor was used in the calculations.

Each first-order EHF differential equation, eq. (5.1), was

replaced by the finite set of linear equations

ST (1} hiymn+ Yomn = Lene 28 dmn) gy =0

(6.3)




A (7)
where the optimal value of //L(Lﬁ% is given, from eq. (4.50), by

~N
/Mzm — Z Cot m Vé,uu,, &4,;7 (6.4)
"0
7-"2%'1 Cehm hiymn Cotyn

The quantities h and V are matrix elements of the operators
L,mn L,mn

hL and Vi, egs. (3.17) and (4.16) respectively, with respect to the

functions £:¥ . For details, see Appendix IV. The tilda over a

quantity indicates a numerical approximation to the quantity.
2\, (0)
Since the orbitals )Q;’v ﬁz are approximate because they are

expressed as truncated expansions of a complete set of functions,

one can use MacDonald's t:heorems29 to show that (for negative/L{LA)

(1] (1] 6.5
)EﬁF,Lﬁ% N )Em"jz.é( ©

and thus, from eq. (4.54), that

(3 (3
02C et > T @6
2 CEensck = CEnELK
v () ; .
for any given value of 1/44 . However, since the optimal value
“\ (7) LA, ' ()
will in general be different from the value A
ENF,LA | EFik

one has that

~r2)

(2)
EEHF 2 2 Erne 4 ©-7
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which states that any numerical second-crder EHF energy is an upper
bound to the true second-order EHF energy. Unfortunately, nothing
id about the relation b Y a
can be said about the relation between /EHFLﬁ an /EHFLg .
Y]
The coefficients G"g") were obtained by solving equations
. , 30 (7]
(6.3) and (6.4) 1nteract1ve1y, & value ot// ﬁ wag guessed
and used in eq. (6.3) which was then solved as an eigenvalue problem.
v
Using the values obtained for the coefficients (g 74(‘7 from eq. (6.3),
~ ()
a new value for /Lf was calculated from eq. (6.4) and was used
LE |
as the next guesq in solving eq. (6.3). This cycle was repeated until
z)
the values of 651‘11(/ #( . eq. {4.47), calculated with twe
(1)

successive guesses for/ﬁ/f L& agreed to a prescribed number of

significant figures. When such agreement was attained, the last
v (7) ~o (1)
guess for/bl { was called )75,;”(_/ Lé , and the corresponding

> (2) Q s
value of gfﬂﬁng was called f:EHF{«‘é The EHF energies

in atomic units and occupaticn amplitudes so cbtained are listed in
Tables I through III. Each result qucted corresponds to a forty
term expansion of the function (r~l The coefficients
Rik R

Cng'r) for the various functions are listed in Appendix V.
The calculations were performed on a CDT 1604 computer using a
Fortran 63 program. The eigenvalue problem, eq. (6.3), was solved
by diagonalizing the secular determinant with a Jacobi rotation
method.31

Although the first-order EHF equations could not be solved

analytically, they were easily prcgrammed with a general program
for all angular types. TIn the next section the perturbation results

of Tables I through III will be compared with other values from the
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TABLE I

Some Second-Order EHF S-component Energiesa

(%) (z
n £ / (2)
EHEOL NF 03 ]
& EHGOA ‘2 £ - éf"’"/-"? éfmf-;os
1 X710 x10 X107 X 1075
2 -0.89009 x 10 -1.32060 64.838 722.72 751.06
3 -0.87826 x 1072 -0.28896 -4.16507 5.496 6.898
A AT
4 -2.2104 x 107> -0.07821 -2.7283 -5.1618 -0.07806
a AN
5 -0.81 x 10~% -0. 0290 -0.911 -3.47 -1.12

~ -

(3/
a The numbers in bold type are the Etm"l«g
(A
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TABLE II

Some Second-Order EHF P-component Energies

(1) (2 (% cz) (
,)75,1(.- 1A EEHF,‘ 77 85""2 12 EEHF,‘ 3 E2nE 16
/ 1 x1p~2 X10°3  x 1p7% x 107
-1.18200 x 10 -2.35373 11.07 112.6 1320.2
-1.7 x 102 -0.70595 -1.26 1.8 240.
- A v
4.3 x 1073 -0.205 -0.669 -1.73 -0.319
-1.6 x 1073 -0.077 -0.29 -1.17 -3.86

N A A




TABLE III

Some Second-Order EHF L-component Energies

(1) E (2
7%H547 EHF LT
-2.7732 x 10 -3.0391 x 10~
-2 -4
~1.0226 x 10 -7.3958 x 10
<474 % 1073 2,482 x 107%
-2.52 x 107 -1.017 x 1074
-1.48 x 107 -4.78 x 10~
3 5

-0.94 x 10~ -2.48 x 10~
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literature. The second-order EHF energies £512) seem to depend
: EHELR P
on the -1/3 power of L. This is a much weaker dependence than the
L-4 dependence predicted by Schwart:z32 for the exact second-order

(2
energies E‘-,)DE' .

VII. DISCUSSION OF THE RESULTS

As discussed in Section II there are two types of SCF schemes:
The RHF scheme containing only intrinsic orbitals and thus neglecting
electron correlation, and the other SCF schemes containing at least
one correlation orbi;al. For thetcase of the helium atom the
difference betwegn.the RHF‘energy_énd the exact non-relativistic
energy is about C.O4\atomid unit and is, by defini;ion, the

3,24 The variational approximation to the EHF

correlation energy.
wave function of Silvgrman,‘Platas and Matsen7yie1ded about 0.03
atomic unit of correlation energy. One can thus see that it takes
‘the infinity of SCF schemes lying between the EHF scheme and the
exact wave function to yield that last 0.01 atomic unit of correlation
energy. Therefore, if one wants an energy much more agcurate than
the EHF energy, one should probably not use a SCF metth to get it,

The accuracy of the EHF scheme has bgen assessed by comparings Lable IV,
several second-order EHF L-component energies with the corresponding
exact values; ‘The comparison is the most unfavorable comparison one

can make. A more practical comparison is made in Table V in which
{

the EHF energies through second order

- 22 (2) (3)
EE/)‘FQ"‘ Z +%Z’7‘ EsE + EEI)’F,DE' { (7.1)




TABLE 1V

Comparison of Several Second-Order EHF

and Exact Energiesl

ERFY ’ Exactb
-0.0132060 -0.01432881
-0.0235373 =0.02644609
-0.0030391 =0.00361237

See eq. (5.22)
Taken from Table I of reference 33

Error °/o

11

16

62



TABLE V
Comparison of Some Second-Order Perturbation

Results with More Accurate Energiesa

z=1 z=2
c1P EHF® cI EHF
RHF =0.48793 -0.48600 -2.91668 -2.86100
S -0.51439 -0.49921 -2.87896 =2.87421
S+P -0.52647 -0.52275 -2.90039 -2.89775
5+P+D -0.52730 -0.52579 -2.90258 =2.90079
S+. .+F =0.52747 -0.52653 -2.90307 -2.90153
S+. .4G -0.52775 -0.52677 -2.90320 -2.90177
S+..+J -0.52695 -2.90195
Exact? -0.52775 -0.5272 -2.90372 -2,9021
Z=3 Z=8
C1 EHF C1 EHF

RHF -7.23641 ~7.23600 -59.11114 -59.11100
S -7.25242 -7.24921 -59.12595 -59.12421
S+P ~7.27575 ~7.27275 -59.15130 -59.14775
S+P+D -7.27845 -7.27579 =59.15467 -59.15079
S+. .+F -7.27908 -7.27653 -59.15549 -59.15153
S+. .4G -7.27924 -7.27677 -59.15570 -59.15177
S+..+J -7.27695 -59.15195
Exact -7.27991 -7.2770 -59.15660 -59.1521

a in atomic units

b Taken from Table II of reference 35

¢ These values are sums of the ::-(F,L@.

d The value in the EHF column is an extrapolation of the first

seven values.




in atomic units, are compared with several configuration interaction
(CI) results. Although the EHF energies through second order are not
necessarily upper bounds or lower bounds to the exact energies, they
nevertheless compare favorably in Table V with the CI results. The
EHF contribution to the second-order correlation energy is about
0.0415 atomic unit as compared to the more accurate value of 0.046652
atomic unit quoted by Sharma and Coulson.34

Various contributions to the second-order EHF double-excitation
energies are compared in Table VI with some approximate values
obtained from an iterative36 solution of the NO equations (eq. (2.7)
with N set to infinity). One thus sees from Table VI that the second-
order EHF energies are roughly the same as the other more elaborate
correlation contributions. Since the comparison of the second-order
EHF energies with iterative solutions of the exact NO equations is
quite good, it will be even better with the iterative EHF correlation
energies. Therefore, one might as well not solve the unperturbed
EHF equations. The second-order energies are good enough.

In conclusion, it might be said that if one wants very good
energies he should not use a SCF method., However, if one will be
satisfied with the gross effects of electronic correlation, then
he could ﬁrobably use the results of the first-order EHF model quite

profitably.
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TABLE VI

Comparison of Some Second-Order EHF Energy Contributions

with Some Approximate Correlation Energy Contributions

Z=1 Z=2 Z=3
contrib. EHF® AE___ b
2s -0.01321 -0.01879 -0.01522 -0.01443
3s -0.00042 -0.00043 -0.00067 -0.00072
4s -0.00005 -0. 00005 -0. 00009 -0.00011
58 -=0.00001 -0. 00001 -0. 000004 -0.000002
2p -0.02354 -0.01391 -0.01943 -0.02092
3p -0.00126 -0. 00089 -0.00157 -0.00186
4p -0.00017 -0.00013 -0.00016 -0.00016
5p -0;00004 -0.00003 -0. 000005 -0.000003
3d -0.00394 -0.00131 -0.00218 -0.00244
4f -0.00074 -0.00026 -0.00036 -0.00037
a These are the E(z) taken from Tables I, II and III
EHF, Lk ’

b Taken from Table IV of reference 36.

2=8

-0.01358
-0.00075
-0.00009
-0. 000001
-0.02255
-0.00206
-0.00013
-0.000002
-0.00275
~0.00036

65



66

APPENDIX I: THE NATURAL ORBITALS OF TWO-ELECTION WAVE FUNCTIONS

1"
The natural orbitals were first introduced by Lowdin13 in 1955

as that set of one-electron functions which diagonalizes the one-

particle density matrix. The one-particle density matrix:j7 ]0(,751} X,;)

with?\s being the collection of space and spin variables, which is

defined as

F(Zf,/5{)—*—[?{51,52,..%@)%7?3(7’, Xa 1ot Xo ) lfch,

(I.1)
for any N-electron wave function E <K7I“'I 5"/) can thus be

written as a diagonal expansion

X
P, 5= %7 Mg K (5 ¥ )

where X O,S} is the k-th NO and /K«A is the k-th occupation

R

number. If the wave function is normalized to unity the sum of the

(I.2)

occupation numbers is equal to unity. For the special case in which

14

the wave function is a two-electron wave function, LBwdin and Shull
have shown that the wave function can also be written as a diagonal

expansion in terms of the NO's with the coefficients /7£ , i.e.

?Q,('r)%{@)'—” %7ﬁ\ //Cé (}1{4)%2()4(}) (1.3)

where

(I.4)

o=
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The two-electron wave function, expanded in terms of a complete

set of suitable functions CF. (X} e.g.
A

CPO{ual) ZC,] CP (){ ij(xzj (1.5)

can be brought into natural form by diagonalizing the matrix of
coefficients C?/;f Shull and ngdin14’15 have obtained several
NO's for the helium atom by expanding the two-electron wave function
in a finite set of functions (as in eq. (l.5)), determining the
coefficients and then diagonalizing the coefficient matrix. Since
they used a finite set of basis functions in expanding the two-
electron wave function, they obtained only a finite number of
approximate NO's.

1
Davidson 6,17 i

n 1962 worked out the formalism for obtaining
the NO's from a two-electron wave function explicitly containing the
coordinate Tyo He pointed out that one can obtain more information
about the NO's by defining them in terms of the wave function rather
than the density matrix. The following discussion of the NO's
associated with a two-electron wave function will be based on
Davidson's point of view.

Let ?CV“ /", ) be a real two-electron spatial wave function

which is either symmetric or antisymmetric with respect to permutation

of the coordinates of the two electrons, i.e.

PCZQ}?—)Q,%}: ﬁ\gjc,{ﬂl £,) (1.6)
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where P(1,2) is the permutation operator and € is equal to +1 for
a symmetric function and -1 for an antisymmetric wave function. A
natural orbital 7((—5) associated with the wave function CZJC&,,C,)

is defined to be; that function which extremizes the functional
A
f7=fx (’C") 95['{:1//@2) ,X CK"") plz:? Q/G (1.7)

subject to the normalization constraint

7= [9(%(5)7((‘:,3 oz . o as

As Igwdin and  Shull showed,14 the NO ')((‘:,) can be considered as
that orbital such that the function X(¥7) X (% 3)has maximum overlap
with the exact wave func;:ion. Setting the variation of "7 with
respect to arbitrary variations in 7((2‘) subject to the constraint

of eq. (I.8) equal to zero leads to the integral eigenvalue equation

47%\()(4(’51):‘ [%}<qu£2))(£ (K2)dz, @9

.where the NO X %) is the eigenfunction associated with the
e,igenvalue /)7i , usually called the k-th occupation amplitude.
Tt;e above equation will, in general, have many eigenvalues and many
eigenfunctions.

The symmetry properties of the wave function can be exploited
to obtain some information about theveigenvalues and ei‘genfunctions;.

Suppose that ’7{ is an eigenvalue given by
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% %
‘7745—"—/Xﬁ(5‘4} (2)\(,{‘7,,{’2] Xp(K2) o/t} p/C-Z | (1.10)

By exchanging the names cf the integration variables in the above
equation, taking the complex comjugate and permuting the variables

in the wave function, one can obtain the expression
* R
f7/% =f><,gC4’€4) ?CK%K@) Yﬁch?}de/?z (1.11)

from which it foliows that

ﬂﬂﬁz 7’72, (1.12)

Therefore, if @C?‘Cq, g;) is symmetric, the occupation amplitudes
are all real, and if ;%iiz;/£65 ) is antisymmetric the occupation
/

amplitudes are all imagimnary (or zero)., By taking the complex

conjugate of eq. (1.9) one can obtain

072 ’Xz%)z [%YCC,-, Ks) )(2 (g,) ATx (1.13)

which implies that, if the wave function is symmetric, the NO's are
all real functions. If the wave fuacticn is antisymmetric, the NO's
are all complex. If the NO ><105) is associated with the occupation
amplitude '714\ , then in the case of an antisymmetric wave function,
. v ) . . , . A
there will be a NO X %/ associated with the occupation amphtude?&,

i.e. the occupation amplitudes occur in conjugate pairs for an




antisymmetric wave function.

Suppose that the wave function is an S-function of the form

e
1
Ble,n)= 2, P Z—%_"—Q P, Cos6,0)
0 mg

(1.14)

where the PL (cosle) are legendre polynomials. In such a case each

NO can be written as and is ~+7 ) -fold degenerate
X§ly @ Lt7) -so1d aeg
/N

with respect to the eigenvalue ?7£L . Thus '
x M
() = CRa (I.15)
XﬂLHL ?(‘KL K(@,}Z} I
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M, , ‘
where )/L (G,p) is the L-th order spherical harmonic. The integral

eigenvalue equation is thus

/71_% Xzﬁ(*;]=f?);(”—?/"z’} Xl-é("é) /;zo/lg‘ (1.16)

The wave function 95(5,, /K‘,), expanded in terms of the NO's,

has the form

?C%,‘Zz): % ﬁﬁ Xk (54) 7(&(57—) (x.17)

if the wave function is symmetric, and

,@C!cq,i’;z)—: %“M[Xg (!54)7@*(5)\

_ x,j (K] X£( %71] (1.18)
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if the wave function is antisymmetric. Since the wave function can
also be expanded in terms of any suitable complete set of ortho-

normal functions, the NO's must be related to any such set of functions
by a unitary transformation. However, depending on the nature of the
wave function with respect to which the NO's are defined, the eigen-
value equation (1.9) might not yield the complete set cf NO's, but

only a subset of them. Suppose that there is a set of functions gé%&?

strongly orthogonal to the wave function @C‘C‘,/ %7_] , 1.e.

j@(57152) 7/, 54}0/57’: f@(iﬁ'wf—») ?/‘ ,)ole, =0.

(I.19)

In expanding the wave function in a complete set of functions, only
that part of the complete set which ig orthogonal to the set of
functions ;Z[(Z;) will explicitly appear in the expansion. The
missing functions can be included formally in the expansion with
iefo coefficient. In this sense, eq. (I.9) can be considered as
defining a complete set of NO's. All of the NO's {or linear
combinations of them) which are strongly orthecgonal to Czycﬁ%,kfz)
will occur as the eigenfunctions of the zero eigenvalue. Those NO's
which are associated with iero occupation amplitude have been called
improper NO's by Kutzelnigg? The properties of NO's associated‘w;th

8
strongly orthogonal functions have been discussed by Arai3 and

1
by Lowdin°39
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APPENDIX II. FHYSICAL INTERPRETATION OF THE SELF-CONSISTENT
FIELD SCHEMES

All of the N-configuration wave functions QJ,V (.\V,'.,(}Cz)
discussed in Section II are SCF functions since the orbitals
comprising them are obtained as self-consistent solutions of coupled
equations. The RHF scheme is the simplest example of a SCF scheme.
The traditional interpretation of the RHF scheme is to picture each
electron as moving in the average field of the other electron. As
it turns out, one can interpret any of the SCF schemes discussed in
Section II in terms of average fields.

Let the SCF equations, eq. (2.7), be rewritten as

N
L Pk Uk 5| (b Cert 3 E o]
X PC12) Wy (o) [ Xk &Ny

(I1.1)

for 1\< iSN. In the N-confiéuration SCF model of a two-electron
system each electron is allowed to occupy each of N states (XN(Y:’)

2
with a probability equal to ’7”4 since the one-particle density

matrix13 ﬂ, (5,,!,‘1') is equal to

o 2
IDN (’C"/ £y) = %27 %Mﬁ 9(//4(%") Xﬂzi(%’}' (11.2)



Consider the expressicn insidg the brackets cf eq. (II.1). The
permutation operator P (1,2) actsz on the arguments of the functions
following it pricr to integration and is present to take account of
electron exchange. Forgetting about the permutation cperator for

the moment, the rest of the expression can be ccnsidered as a one-

electron Hamiltonian, /)(f) ~+ % %2- ; and an energy E}(;‘f‘%/

where

(1II.3)

2; [479/ = E; ~ é? <¥Ca/
MR N M, % LOCAL.

with the local energy

E C42) . X;,/A(%a)A (43) X,v,-ﬁ (%2) (T1.4)
Xk (52) Xt (53)

The one-electron Hamiltonian, considered as an operater depending

on r, as a variable and L, as a parameter, would be the Hamiltonian
for the motion of an electron in the field of a unit positive charge
at the origin of coordinates and a unit negative charge held fixed
at ro- The term 1/Z measures the strength of the electronic inter-
v
action relative to the central field. The quantity 5,,£ (,Cz] is
the energy of the moving electron and depends parametrically on the
position of the stationary electron, The actual spatial distribution
. - (v ] ) . .
of Electron 1 in the i-th state, >< w7/ ; 1is obtained by quantum-
M
mechanically averaging cver all possible positions of Electron 2 in

each of its possible states and then summing over all the possible

states in which Electren 2 can be found, weighting each member of the
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sum by the occupation amplitude associated with the particular state.

The DODS ground-state function can be transformed into the form

?Cz‘nm:«)"‘ N 7‘7" P(7/2/) 7[(54)?764‘:&) (11.5)

1 |
7[(": [(70005 0") 000507 7 (1I.6a)
+(’7,,,,,m) X (&) 2]

and D005, 0

? ()= Z&‘?o 60S,0 7) 2 )(pops,a 7 (11.6Db)
—_ (47 bons,0 7) X (oos, 02]

The DODS equations can be written as

(ot [[h ey + 35 -5 1]

X (14 £G3 ) fcz. )/7-["2,)> o

ri Y (1I.7a)

i

<,fc o) [4( 115 € G
(1P ['/,al) 2 (43 / Ll /> _

(I1.7b)
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where

?“CC“/)/; (42) ?057,/
?(,{1,} ?[,{,) (11.8)

E{ (k.)= EDODS"

o &
and similarly for E? (,({,4),The functicnal form of <’“”/’Vv”f)
Lops

suggests that in the DODS mcdel one of the electrons is pulled in
close to the nucleus while the other electron is pushed farther
out. The permutation operator is present to take care of symmetry.
Forgetting for the moment the permutation operator and the quantum-
mechanical averaging in eqs. (I1.7), what remains of the equations
is very similar to the equations arising in the cove-polarization

40 | , . :
method =~ without exchange. The DODS medel can be thus interpreted as
an average core-polarizatiocon method incliuding exchange.

From the form of the DODS orbitals £ and g, egqs. (II.6), and
from the fact that - is a correlaticn occupation amplitude

70005,02 P P

for the ground state (it must go to zero as 1/Z goes to zero), one
12,25

can see why 1// Z" must be used in performing a perturbation expansion

of the DODS function written in the form of eq. (I1.5}.
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APPENDIX III. CONCERNING THE SIGN OF THE FIRST-ORDER
NATURAL OCCUPATION AMPLITUDES

In this appendix it will be shown that all first-order natural
occupation amplitudes cannot be positive. One already has the result,
as shown in eq. (4.1la),that the first-order intrinsic occupation

amplitude must be zero.

The first-order correlation amplitudes ”7 (1) s kB kL , are
given by eq. (4.26) as
/0/ (c
7 = JAPE P
L (I1I1.1)

7+ 2<x’°’ Jho [x 2>

is equal to -1 for the ground state. The numerator of

. )
eq. (II?.I) is ﬂ—iz-f;?' <)(Lz(k,)$,f2r”)//"‘-*7/ 75(4")75( >

which is non-negativel i.e.

<X/Ol / /}( o > > 0. (111.2; |

(o)

since E

The denominator of eq. (IILI.1) can be shown to be positive'by
/)
expanding the functions x (r) in terms of the complete set: of
hydrogenic orbitals the discrete part of which will be denoted by
@I (f‘) :L<0O , and the continuum part by C?L (";‘/f:).
Thus |
/D) i
X r) = Z ; C '6]9 v P-)
1=RL

+ fo ACL C)E (i) T




)
with k = 2 for L = 0 and k; = 1 for L>i. Ssince the X (») are

LR
normalized to unity one has

ZAdY)
— , o?,, .2
/=2 Coy T | "diCp L) (111.4)
=%/_ D
and therefore
5 |
0 \< Céé,/’ < 7 (I1I.5a)

and
Z
1IN Ci4 (/(}< /- (I11.5b)
The denominator of eq. (III.1) is thus
1% 4 7y . §C2.<_ 7
2K hxy > 14250 Cxp)

2
+ﬁéﬁ@4978&)

(111.6)

77

since
/n )P Co) = L )
2 +)
The quantity é?(;{ ) is a continuum energy and is therefore positive.

2
Since the CTL'%& 64’) are positive, the continuum contribution to the

denominator is positive. Therefore, using eq. (III.5a),
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142Xk he(XE>2 7 % RmE

(I11.8)

and thus, since

S 1 2 7
ZL (l—+/}2: <7‘1‘ 3t -t (L-fd\éa)z)/ (111.9)

one has

7 + 2<X “ /[M. /)( ) > > 0. (111.10)

Therefore, substituting eqs. (III.2) and (III.1l0) into eq. (III.1)

~yields the inequality

HL[Z > O | (I11I1.11)

7~

for k'zikL. Taking into account the first-order intrinsic occupation

amplitude, eq. (4.1la), gives the desired result

4722 \< 0 (I11.12)

for all k» 1.
Vs
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APPENDIX IV: CALCULATION OF THE MATRIX ELEMENTS
In this appendix the calculation of the matrix elements hL mn

and VL mn occurring in eqs. (6 3) and (6.4) of Section VI will be
b

indicated in some detail.

The associated Laguerre functions f (C)used in expanding the
(0)
orbitals X C"‘) are
EHF L

[ / (2L +2)
(= ¥ h (2) )

Lh //(2/-+m¢2),/ (Wje .

(o)
where the associated Laguerre pclynomial ZL (r) is
h
(o¢) h v
L Cr‘)—-\ 7LO< (~+)
(1v.2)
2/
b N+ . At coeffies .
ere ) is the binomial coefficient. These polynomials

satisfy the differential equation41

(x| ()
[l (D(
V‘Z/_;ZZ___L_ ~+ <<><-+7 V’) 0_/_42_(_/_ +# (77 (J)=0(1v,3)

and the following relationships:

&M‘nc") L(D(M)
—77 = — nf;} ) (IV.4a)

(o) (=1)
r C?/ n(" " h?,ﬁ—(ﬂ‘tX)Z (,.) (IV.4b)




and the recurrence relation

( o
(r)ﬂ)[ f:(‘f),,q = (2") t7+x~r)[. 5,,/) , —

(o
- </7"" )Z-f"s n-7

(IV.4c)

The orthonormality integral for the polynomials is

(o() m+K
JODO -V“L C’“/ (P} = ‘><'/ (M )0(\”7/’7 (1V.5)

and their generatlng function is
Z3)
N )= o 47 e )
7=0 '
(2L+2)

The associated polynomlals ZL (») are related to the second-

(IV.6)

I)LZ +2 ‘
order Laguerre polynomials used by Hirschfelder and

28
L'c;wdin,27 Shull and Lowdinla’15 and Kutzelnigg by the relationship

242 (2L42)
Z. (r) = Q/z+2é+2)./l. (~) (Iv.7)
h+>L 12 n
for n> 0. The general relationship is
o (x|
L (r) = (“ 7/"((//71‘0()./ Z‘ (=) . (IV.8)
4% fn
The matrix element h is

L,mn

: 4[_,141;1 - <7[Lm (P)/L. [;‘) /]/[_/7 0"/> (1v.9)
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where
2
| 6= -1 dC) 4 4 L{lya)
L 2 drz r or% (1IV.10)
and the matrix element V is
L,mn
,7

v, =
GUO v

X<[”1()7[;’?(V‘)/,,\L+7/1[7[) (1V.11)
X#oo(Vz}>

Writing out the expression for hL mn in detail one has
' )

where [ao(}ﬂ} is the 1ls hydrogenic orbital.

AL,mn=~Q/VU,7/VW, éénm (1V.12)

where, after using eq. (IV.3),
_i_ 242 c2(+2) , (el+2)
AL mp = f dx X7 'XL (X /-,, (x)

L+ c2L+2) (2l ¢2)
/O/X x° 7"7%_ (x/d/ (x) (Xv.13)

L 2
._(Z_w,)foao/x X 2£+7 x/‘/;x}‘zj (;i;/

where X:Q p~ and where
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7 7
N = m
Lm (21% Wh‘Q)/ (IV.14)
Thep, using eqs. (IV.4a) and (IV.5), one has
7 2 (5[ +2)/ <ﬂ4+2£12'
— 2L12)!
4‘-,”1’) — 7 ( 1 ) m fml/)
(1Iv.15)

'7L \72’”7 n-q ‘*(/_“t"])IL/m p

/

where

IL mn FJX K ZL‘/'7 ._7( (2[*{-2/ (%+2)(IV 16)
L [ (x}

and

‘)Lmr) f();/)ﬂ )(2LT7 XL[ZLTLZ) (;?}‘3) (Iv.17)

The integrals IL m 2re easily calculated using the generating
2
function of the polynomials (IV.6). The method used below is the
same method used by Hirschfelder and ngdin.27 Integrating the
generating function appropriately, one has
@L+7)!

EZ;—;)“@? IZ- Ei— [A,_ ,{._____ ](2L+2) “(1v.18)

The integral I

L.mn is obtained from eq. (IV.18) by differentiating
3

both sides m-times with respect to /{,{_, and n-times with respect to
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)’ and then setting both //64 and ./ equal to zero. Thus, one

obtains for n1;> n,

- )
Lma= 7 20 (2)(0) Cne0!

] =0

X (n-0)! C2L +7+7)! ( 1)/

(Iv.19)
which can be summed to
4.
IL m == (QL +7-{-/?~/
1M =0 (/)] (1V.20)
A similar treatment of the integral JL mn gives, for m 2; n,
J qu (21+7~u‘)»/ (,, '+7) (1v.21)
Limn = — - -~/ t7) '
mn (=0 (/),/
Substituting eqs. (IV.20) and (IV.21) into eq. (IV.15) and using the
42
relations
7 Coltger)]
2L+747)!
DF CLATeidt  (of244)! .
E (r)! |
/=0 “ (2L +7) (n)!
and

4 .
Z/ (21*/‘ 7~f—/)/ (/.) ~ (2[ + 244 ),/ (1v.23)
=6 C/.)'/ (QL’TL:))) (h“7)'/




one obtains, for m n, the following expression for h
P) 2 b) g p L,mn

m! Ql+2+n)! I 2 1 24
ALW’ /v,/ (2lgzim)l[ 2 (2:7)+(2L+5)ZN 24)

The integral V can be written as

(2L+2) (2L+2]
‘//.,ﬂm‘; MMM’? [/( +/<ﬂ/n7

/ﬂ’_’ (1V. 25)
K = [Telt %™ L0Y,
x/’(7 oz xae Pl (xcl)(z)
(1v.26)
Using the recurrence relation, eq. (IV.4c), one can write
:TZ) = (n+1) m r)+7
+ @414 ) AS

()
(h't‘(x) A m n-7
where

X X _X
ms fpoa/xy& 7/ m)[ e L ff(x'z/,“"'zs’

84



85
(<
The integrals A mS can be calculated by using the generating

function, eq. (IV.6), in much the same way as for the integrals IL o
2

and JL . One thus has

Oo,mn 3
g9 ACI_ ] (71-0)
E(ZC'Z‘O/(’{ A f? X - (9_ “‘/&I”\) (0(1"7) (IV.29)

which yields

(x|
me = (o<~+m+5.~7)f (X+m-~S)

”’1/5,/ 2 (Xt+m+5+7)

(1V. 30)

Ko = (Xtm+n=2)]
mn Y 9 (X+m—th42)

— (%t M =n~7)(K4min ) (m1 w9 -7)
>< -+ (D<+"Vl __,,])<0<-+M-(—/’l~7)(2"]7‘0<7‘7)

= 4 X¢m-n+1) (o) 7

(Iv.31)

Substituting eq. (IV.31) into eq. (IV.25) gives

Vz,mn= V2/[+1 (rn+n+2),/

2((47)2L+5 )4 (mrn)~(m~n )2
9 (mMene2l€3) p |1 X

X[CLA mez)] (al+n¢2)] '

(1Iv.32)
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Some of the above matrix elements are zero. If they are denoted by

VL oo , then the indices m and n must be related by the equation
>“o 0

2(2[7‘5]([‘1‘7)‘(‘ Mg —1‘00 — (”’)0'“"70)230 (1v.33)

or by

o= 3 T AT

The above two equations were obtained by setting the numerator of
the term in square brackets of eq. (IV.32) equal to zero.

The following schemes were used for calculating the integrals
hL,mn and vL,mn recdxsively‘by computer. - For the case of L = 0,

the computer was given the value
/)o, 17 = Z‘ (1v.35)

which was used to calculate the diagonal elements h by the

O,nn

formula

— 2
Ao,nn* 40,0—7 n-7 "LE (1V.36)

and these were used to calculate the elements 40/”'{'7 n by the

formula

a4 n+17
40,h+7n" Q‘fé‘%"”) ‘7,,:‘3‘ (1v.37)




which were then used in the formula, m n+2

m
m+2

(1Iv. 38)

Ao,mn = Ao,mq n

From eqs. (IV.32) and (IV.34) one can define the following

recursive scheme for calculating the integrals VO o
3

\/ =~ L (1V. 39)
011 = K '

Vo,rm = Vo,ht n7 (@2n=1) (5]
| 2(n¢2) (4un) © OO

7
VO)I/)+4,VI = [/o/rm (2M+ )  (IV.41)
2/ (n41)(0+3)
for m2n+2
l/o,mm = Vo/m-7n (nta)

2y mimez)’

X 7+ 2 (n=m+1)

D+ m+n—(n~-m+1)2 4 4o

and for mo> g
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VO/ Mg+ 7 No = VD yMe—T Y,

4 (/’V’O‘t"’o*7)(”40 +4s )
Lflf(mo+3]6"7m‘2)(”’o¥7) rig

X (1745 2410 ~ (me~ns+7) ’-)

9 +my 0y — (M ~1o17)°
(Iv.43)

where, from eq. (IV.33) or (IV.34), the pairs of values (mo,no) are
(5,1), (10,5), (16,10), (23,16), (31,23), (40,31), etc.

For computational purposes the matrix elements hL and V

,mn L,mn
for L}_ 1 were relabled as
Limn = /lL,m-7 n-7 (IV.44)
and
(IV.45)

Vemn = VL, m-1 4-7

for m,n>1. The following recursive scheme was used to calculate

=z
the integrals /gll”ﬂ"l s L}_l:

— —_ (IV.46)
s, 17 = {L-1) )

2(L+7)
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{ 2
L, n 467’)7 ’ZL-{-§)/ (IV.47)

_ (1 Z ’
%L/V%M n = (2 ‘/"%L,nﬂ)/‘ml (IV.48)

and for m > n#2
-

— - -
Jl/m” g%é'/ m-~7n /Wl 7__ R (1v.49)

2 [+m+7

The following recursive scheme was used to obtain the matrix elements

’\)Z,rnn , L} 1:

(2[,—»46")
Y,17 =

2C2L+3jm 4 (1V.50)

9-(247*17-f7)(h 7)

(/_-7‘ 7}(217457-(«@ -7
(/_-f 7}<Z[+\§‘)—f/7—2)

(Iv.51)




ULini1n = Ve, nn 2L 20 -1 , avs2)

2/‘4—(2/_ ~M42]'

for m 2:n+2

‘4)L,n1;1':: (jllnq—l7 n 6“77F01#:Zé’“2-)
2 1) (2L Fturr)

(1Iv.53)

2 (b41)2Llts )+ msin 2 ~(men)?
2 <[_——f’/) (2-(.-(—5‘) %m#n—~3_(m’_hs7)2

and for m.0 ;> no

ULIVho‘("7 no: qf[‘

1moy=T,4,

<QZ- *“’o*z‘”hs*ﬂ(lﬁ LCTE YN ,’2)

4‘/(/”404) My (2[+l¢;0+7) (2L {#ho-fz)'

Q_(L#ﬂ)(iledj}-fﬁho’f/%)-7‘~'Cpho"¢@y¥7j2
7 CL+7) (2L+5)-,< Mo -+ ng ~3~ (g “}’0?7]

(Iv.54)

where the values for mO and n are listed in Table VII.
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TABLE VI

Some Values for m and no

L (Mo, m)

1 (8,2) (15,8) (23,15) (32,23) etec.
2 (10,2) (19,100  (29,19) (40,29)  etc.
3 (12,2)  (23,12)  (35,23) etc.
4 (14,2) (27,14) etc.

etc.

The recursive schemes defined above turned out to be quite
accurate. The computer was given a starting value accurate to ten
signif icant figures. After using the recursive schemes forty
times, the matrix elements were still accurate to ten significant
figures. The recursive schemes are much easier to use than the

43
more general summation expressions developed by Jones and Brooks.
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APPENDIX V: COEFFICIENIS OF SOME ZERO-~ORDER BASIC EXTENDED
HARTREE~¥OCK CRBITALS

In this appendix the expansion coefficients for several of the

o (8)
forty term wave functicns X (» will be iisted. Only those
He Lk

wave functions are considered which are associated with the values
(2) o
EEHF Lé . Each coefficient Cuf ;N is a functlon of the

t ) d is listed for th 1 value Y y
arameter an is l1ste or e optimal value
P Ay R, P ENF, Lé

of each parameter. It will be recalled from Section VI, eq. (6.1)
47
and (6.2), that the orbitais >( (r) ﬁ were expanded as
HE,L

3,~8+@ N

L S0 2 (r) (v.1)
%Eﬁl‘,[_é = niélﬂ L L;n{’)

where the functions {("‘) are the associated Laguerre functions

(2£+2)
[w—- Q/Ql/f/ﬂuz 2)] <2N Lm e

x e} X ?D}} X /8]
The coefficients of the functiors () “ ]
(o] erc o2 ' T EHFR 037 pnE,04
and .X ('1 are listed in Table VIII; the coefficients of the
Eﬂrl 06(-0) X /0’ X /D} X ?D)l
functions (¢ [ } and g
Rl 11 > X Ellr 12 .73 EneE 14
are listed in Table IX; and the coeffia.;ents of the functions
) r0l )
) e &
XEHF; 27 ’ XEH(L,?:] ’ XE"/F—/“’7 ’
(0) ef , and /ol are
xé—‘;{,:, s1 ~ Xileger X &er 71

listed in Table X. All numbers have been rounded off to the given
values. The value -0.00000 mears that the ccefficient is less than

the number -0.000005.
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Coefficients of Some S-Type Zero-Order EHF Orbitals

[eNeNoNeNoNeNelNeNolNolNo)

[ L L
[oNoNeNolNoNoNollo]

C

02,n

.970972
.227633
.009084
.052732
.021704
. 024500
.011578
. 004181
. 000610
.000791
.001126
.001016
. 000770
. 000528
. 000335
. 000198
. 000110
. 000055
. 000023
. 000006
. 000003
. 000006
. 000006
. 000006
. 000005
. 000003
. 000002
. 000002
-0.
. 000001
. 000000
. 000000
. 000001
.000001
. 000000
. 000000
. 000001
. 000000
.000000
. 000001

000001

TABLE VIII

C

03,n

.496560
.472334
.584890
.377988
. 149303
.001995
.072325
.087957
.075656
.053861
.032601
.016010
. 004855
. 001645
. 004751
.005673
.005358
. 004468
.003412
.002416
. 001584
. 000945
.000487
.000180
.000010
.000113
. 000160
.000171
.000161
.000140
.000113
.000087
.000065
. 000047
.000033
.000021
.000011
. 000002
. 000005

.000014

[eNeNoNoNoNeNoNoNe)

C

04,n

. 34467
.45212
. 24765
.16092
.41057
44938
.35011
. 20033
. 06069
.04014
.09678
. 11645
.11079
.09114
. 06631
.04210
.02168
.00629
. 00409
.01017
.01292
.01334
. 01228
.01043
.00828
. 00616
.00427
. 00269
. 00145
. 00054
.00010
. 00050
.00072
.00081
. 00081
. 00077
. 00068
. 00061
. 00054
. 00053

05,n

-0.248
0.446
0.143

-0.206

-0.279

-0.267
0.101
0.286
0.374
0. 367
0.291
0.182
0.071

-0.023

-0.090

-0.284

-0.141

-0.135

-0.116

-0.091

-0.064

-0.038

-0.017

-0.000
0.012
0.019
0.023
0.024
0.023
0.020

0.017 -

0.013
0.010
0.007
0.004
0.001
-0.001
-0.003
-0.004
-0.007
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“11,n

0.896143
0.421112
0.135407
0.019260
-0.015166
-0.018910
-0.014098
-0.008626
-0.004595
-0.002106
-0.000743
-0.000081
0.000187
0.000257
0.000237
0.000188
0.000136
0.000092
0.000060

0.000034 -
0.000021

0.000011
0.000004
0. 000001
-0. 000001
-0.000003
-0.000001
-0.000001
-0.000000
-0.000000
-0.000000
-0.000000
0.000001
-0.000000
-0.000001
-0.000000
-0.000001
0.000001
-0. 000000
~0.000000

TABLE IX

c12,n

-0.620
0.203
0.503
0.455
0. 295
0. 143
0.041

-0.015

-0.037

-0.040

-0.033

-0.024

-0.016

-0.009

-0.004

-0.001
0.001
0.001
0.002
0.0602
0.001
0.001
0.001
0.001
0. 000
0.000
0. 000
0.000
0. 000

-0.000

-0.000

-0.000

-0.000

-0.000

-0.000

-0.000

-0.000

-0.000

-0.000

-0.000

C

Coefficients of Some P-Type Zero-Order EHF Orbitals

13,n

447
. 347
. 387
.082
.217
.374
.392
.323
.218
.006
.035
.020
. 050
.061
.060
.051
. 040
.028
.180
.010
. 004
.001
.003
. 004
. 005
. 004
. 004
.003
.003
.002
.001
.001
.001
. 000
.000
.000
. 000
.000
. 000
. 001

1l4,n

-0.342
0.385
0. 266

-0.087

-0.286

-0.265

-0.103
0.092
0.247
0.330
0. 341
0.299
0.226

0.144

0.066
0.003
-0.042
-0.069
-0.082
-0.082
-0.076
~-0.063
-0.049
-0.035
-0.022
-0.012
-0.004
0.002
0.006
0.009
0.010
0.010
0.009
0.008
0.007
0.005
0.004
0.002
0.001
-0.000
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TABLE X

Coefficients of Some L-Type Zero-Order EHF Orbitals

[

21,n

.60534
.58921
.43326
.26960
. 14467
. 06404
.01845
.00377
.01223
.01350
.01161
.00876
.00601
.00378
.00215
.00106
.00037
. 00001
.00021
.00028
.00028
.00025
.00020
.00016
.00011
.00008
. 00005
.00003
.00002
.00001
. 00000
. 00000
. 00000
.00000
. 00000
.00000
. 00000
.00000
. 00000
.00000

C31,n

' 0.31872

0.45227
0.48193
0.44041
0. 36240
0.27452
0.19308
0.12589
0.07499
0.03914
0.01567
0.00155
-0.00601
-0.00924
-0.00984
-0.00901
-0.00753
-0.00588
-0.00433
-0.00301
-0.00195
-0.00116
-0.00059
-0.00021
0.00003
0.00017
0.00023
0.00025
0.00024
0. 00022
0.00018
0.00015
0.00012
0.00009
0. 00006
0.00004
0.00003
0.00004
-0.00000
-0.00001

[eNeoNeoNeoNoleoNeoNoNoleNeNoNoNoNoNoNel

C

41,n

. 1369
. 2484
.3353
. 3863
. 0401
. 3852
. 3483
.2991
. 2454
.1930
. 1454
.1048
.0716
. 0458
. 0266
.0129
.0036
.0022
.0056
.0071
.0074
. 0071
. 0062
. 0052
. 0042
. 0032
. 0024
. 0017
. 0011
. 0007
.0003
.0001
. 0000
.0001
. 0002
.0002
. 0002
. 0002
.0003
.0003

[eNeNeoNoNoNoNeNeNoNeo NoNoNoNoNeNeNoNoNeNoNoNo o)

(o4

51,n

. 0497
.1077
.1726
. 2347
. 2866
.3233
. 3430
. 3462
.3352
.3130
.2831
. 2485
.2123
.1766
.1430
.1127
. 0862
.0638
.0453
.0305
.0191
.0104
.0041
. 0002
.0030
. 0047
. 0055
.0057
.0055
. 0050
. 0044
.0038
.0031
.0025
.0019
.0014
.0010
. 0007
. 0004
. 0001

“61,n

0.016

0.039
0.071

0.110
0.152
0.194
0.232
0.264
0.288
0. 302
0. 308
0.315
0.295
0.278
0.257
0.234
0.208
0.182
0.156
0.132
0.109
0.089
0.071
0.055
0.042
0.030
0.021
0.014
0.008
0.004
0.001
-0.002
-0.003
-0.004
-0.005
-0.005
-0.005
-0.005
-0.005
-0.005

OOOOOOOOOOO'OOOOOOOOOOOOOOOOOOOOOOOOOOOOO

(o4

71,n

. 004
.012
.025
.043
. 065
.092
.121
.151
.190
.208
.232
. 251
. 266
.275
.278
. 277
.271
.261
. 247
.231
.213
.194

174
155
135

. 117

100

. 084

070

. 057
. 046
.036
.028
. 021
. 015
.010
.006
.003
. 000
.003
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